
Hortonworks Data Platform

 (August 31, 2017)

Data Access

docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform August 31, 2017

ii

Hortonworks Data Platform: Data Access
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including YARN, Hadoop Distributed
File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major
contributor of code and patches to many of these projects. These projects have been integrated and tested
as part of the Hortonworks Data Platform release process and installation and configuration tools have
also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform August 31, 2017

iii

Table of Contents
1. What's New in Data Access for HDP 2.6 ... 1

1.1. What's New in Apache Hive .. 1
1.2. What's New in Apache Tez ... 2
1.3. What's New in Apache HBase ... 2
1.4. What's New in Apache Phoenix ... 2
1.5. Druid .. 3

2. Data Warehousing with Apache Hive ... 4
2.1. Content Roadmap ... 4
2.2. Features Overview .. 6

2.2.1. Temporary Tables ... 6
2.2.2. Optimized Row Columnar (ORC) Format .. 7
2.2.3. SQL Optimization ... 7
2.2.4. Transactions in Hive ... 9
2.2.5. SQL Compliance ... 19
2.2.6. Streaming Data Ingestion ... 24
2.2.7. Query Vectorization ... 24
2.2.8. Beeline versus Hive CLI ... 26
2.2.9. Hive JDBC and ODBC Drivers .. 28

2.3. Moving Data into Apache Hive ... 31
2.3.1. Using an External Table .. 32
2.3.2. Using Sqoop ... 34
2.3.3. Incrementally Updating a Table .. 37

2.4. Configuring HiveServer2 .. 41
2.4.1. Configuring HiveServer2 for Transactions (ACID Support) 41
2.4.2. Configuring HiveServer2 for LDAP and for LDAP over SSL 43

2.5. Securing Apache Hive .. 47
2.5.1. Authorization Using Apache Ranger Policies ... 48
2.5.2. SQL Standard-Based Authorization ... 50
2.5.3. Required Privileges for Hive Operations .. 52
2.5.4. Storage-Based Authorization .. 54
2.5.5. Configuring Storage-Based Authorization ... 54
2.5.6. Permissions for Apache Hive Operations ... 56
2.5.7. Row-Level Filtering and Column Masking .. 56

2.6. Troubleshooting .. 57
2.6.1. JIRAs .. 59

3. Enabling Efficient Execution with Apache Pig and Apache Tez 60
4. Managing Metadata Services with Apache HCatalog .. 62

4.1. HCatalog Community Information ... 62
4.2. WebHCat Community Information .. 63
4.3. Security for WebHCat .. 64

5. Persistent Read/Write Data Access with Apache HBase .. 65
5.1. Content Roadmap ... 65
5.2. Deploying Apache HBase .. 67

5.2.1. Installation and Setup .. 68
5.2.2. Cluster Capacity and Region Sizing ... 68
5.2.3. Enabling Multitenancy with Namepaces ... 73
5.2.4. Security Features Available in Technical Preview 74

5.3. Managing Apache HBase Clusters ... 75

Hortonworks Data Platform August 31, 2017

iv

5.3.1. Monitoring Apache HBase Clusters ... 75
5.3.2. Optimizing Apache HBase I/O .. 75
5.3.3. Importing Data into HBase with Bulk Load ... 83
5.3.4. Using Snapshots ... 84

5.4. Backing up and Restoring Apache HBase Datasets ... 86
5.4.1. Planning a Backup-and-Restore Strategy for Your Environment 87
5.4.2. Best Practices for Backup-and-Restore ... 88
5.4.3. Running the Backup-and-Restore Utility .. 89

5.5. Medium Object (MOB) Storage Support in Apache HBase 97
5.5.1. Enabling MOB Storage Support .. 97
5.5.2. Testing the MOB Storage Support Configuration 98
5.5.3. Tuning MOB Storage Cache Properties ... 98

5.6. HBase Quota Management ... 99
5.6.1. Setting Up Quotas .. 100
5.6.2. Throttle Quotas .. 101
5.6.3. Space Quotas ... 102
5.6.4. Quota Enforcement .. 103
5.6.5. Quota Violation Policies .. 104
5.6.6. Impact of Quota Violation Policy .. 105
5.6.7. Number-of-Tables Quotas ... 106
5.6.8. Number-of-Regions Quotas ... 107

6. Orchestrating SQL and APIs with Apache Phoenix .. 108
6.1. Enabling Phoenix and Interdependent Components 108
6.2. Thin Client Connectivity with Phoenix Query Server 108

6.2.1. Securing Authentication on the Phoenix Query Server 109
6.3. Selecting and Obtaining a Client Driver ... 109
6.4. Creating and Using User-Defined Functions (UDFs) in Phoenix 110
6.5. Mapping Phoenix Schemas to HBase Namespaces .. 110

6.5.1. Enabling Namespace Mapping .. 110
6.5.2. Creating New Schemas and Tables with Namespace Mapping 111
6.5.3. Associating Tables of a Schema to a Namespace 111

6.6. Phoenix Repair Tool .. 112
6.6.1. Running the Phoenix Repair Tool .. 113

7. Real-Time Data Analytics with Druid ... 115
7.1. Content Roadmap ... 115
7.2. Architecture .. 116
7.3. Installing and Configuring Druid .. 117

7.3.1. Interdependencies for the Ambari-Assisted Druid Installation 117
7.3.2. Assigning Slave and Client Components .. 118
7.3.3. Configuring the Druid Installation ... 119

7.4. Security and Druid ... 121
7.4.1. Securing Druid Web UIs and Accessing Endpoints 121

7.5. High Availability in Druid Clusters .. 123
7.5.1. Configuring Druid Clusters for High Availability 123

Hortonworks Data Platform August 31, 2017

v

List of Figures
2.1. Example: Moving .CSV Data into Hive ... 32
2.2. Using Sqoop to Move Data into Hive .. 34
2.3. Data Ingestion Lifecycle .. 38
2.4. Dataset after the UNION ALL Command Is Run ... 40
2.5. Dataset in the View .. 40
5.1. HBase Read/Write Operations ... 76
5.2. Relationship among Different BlockCache Implementations and MemStore 77
5.3. Diagram of Configuring BucketCache .. 80
5.4. Intracluster Backup ... 87
5.5. Backup-Dedicated HDFS Cluster ... 88
5.6. Backup to Vendor Storage Solutions ... 88
5.7. Tables Composing the Backup Set ... 95

Hortonworks Data Platform August 31, 2017

vi

List of Tables
2.1. Hive Content roadmap .. 4
2.2. CBO Configuration Parameters .. 8
2.3. Hive Compaction Types ... 10
2.4. Hive Transaction Configuration Parameters ... 11
2.5. Configuration Parameters for Standard SQL Authorization 19
2.6. HiveServer2 Command-Line Options .. 20
2.7. Trailing Whitespace Characters on Various Databases .. 24
2.8. Beeline Modes of Operation ... 26
2.9. HiveServer2 Transport Modes .. 26
2.10. Authentication Schemes with TCP Transport Mode .. 26
2.11. Most Common Methods to Move Data into Hive ... 31
2.12. Sqoop Command Options for Importing Data into Hive ... 37
5.1. HBase Content Roadmap in Other Sources .. 66
5.2. MOB Cache Properties .. 99
5.3. Quota Support Matrix ... 100
5.4. Scenario 1: Overlapping Quota Policies .. 105
5.5. Scenario 2: Overlapping Quota Policies .. 106
5.6. Scenario 3: Overlapping Quota Policies .. 106
5.7. Scenario 4: Overlapping Quota Policies .. 106
7.1. Druid Content Roadmap in Other Sources ... 115
7.2. Advanced Druid Identity Properties of Ambari Kerberos Wizard 122

Hortonworks Data Platform August 31, 2017

vii

List of Examples
5.1. Simple Example of Namespace Usage .. 73

Hortonworks Data Platform August 31, 2017

1

1. What's New in Data Access for HDP 2.6
New features and changes for Data Access components have been introduced in
Hortonworks Data Platform (HDP), version 2.6, along with content updates. The new and
changed features and documentation updates are described in the following sections.

• What's New in Apache Hive [1]

• What's New in Apache Tez [2]

• What's New in Apache HBase [2]

• What's New in Apache Phoenix [2]

• Druid [3]

Important

HDP features that are labeled Technical Preview are considered under
development. Do not use Technical Preview features in your production
systems. If you have questions regarding such a feature, contact Support by
logging a case on the Hortonworks Support Portal.

1.1. What's New in Apache Hive
Important new features of Apache Hive in Hortonworks Data Platform (HDP) 2.6 include
the following:

Full Support and Easier Setup for Interactive SQL Queries

Hortonworks supports interactive SQL queries with Hive low-latency analytical processing
(LLAP). In the previous HDP release, Hive LLAP was a Technical Preview. Persistent query
infrastructure and optimized data caching enable Hive LLAP. See Setting Up Hive LLAP for
how to enable Hive LLAP in Apache Ambari.

LLAP-Focused Revision of the HDP Apache Hive Performance Tuning Guide

The Hive Performance Tuning Guide focuses on Hive LLAP to leverage gains in performant
data analytics technologies. The guide includes a diverse set of recommendations that
are tailored to optimizing the Tez framework for efficient querying of a Hive EDW.
While interactive querying is emphasized, the documentation includes guidelines for
environments that prefer or must use Hive on Tez without LLAP.

Support for the ACID-Transaction MERGE Statement

Hive in HDP 2.6 supports the MERGE SQL statement, which simplifies updating data,
deleting data, and change data captures among tables.

Enhancements for SQL and TPC-DS Completeness

You can offload SQL workload to Hive using all TPC-DS queries with only trivial rewrites.
The addition of multiple and scalar subqueries, INTERSECT and EXCEPT operators, standard

https://support.hortonworks.com
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_llap-on-cluster.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html#setting-up-llap-environments-ambari
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/new-feature-insert-values-update-delete.html

Hortonworks Data Platform August 31, 2017

2

syntax for ROLLUP / GROUPING SET, and syntax improvements for GROUP BY and ORDER
BY make the SQL offloading easier than before.

Hive View 2.0

With the release of Apache Ambari 2.5.0, HDP provides Hive View 2.0. Hive View 2.0 is an
enhancement over earlier Hive View UIs because it has more nimble ways to create and
manage databases and tables, offers visual explain plans of your queries that pinpoint
workload costs, and provides a way to view security policies at the table level.

1.2. What's New in Apache Tez
Expansion of Tez View Capabilities

Tez View in Apache Ambari 2.5.0 has more features to debug Hive queries and Apache Pig
scripts. Among the main improvements are more powerful query search capabilities and a
new Total Timeline view that provides visualizations and specific data about where query
time is spent.

1.3. What's New in Apache HBase
HBase in Hortonworks Data Platform (HDP) 2.6 includes the following new features:

HBase Storage Quota (Technical Preview)

In a multitenant environment, you often want to set quotas for limited resources for
networking and storage to protect the SLAs of critical workloads. Earlier versions of HBase
that were bundled in HDP support setting quota limits on RPC requests, also known as
request throttling. HBase in HDP 2.6 introduces storage quota. This allows you to manage
storage at either the namespace or the table level.

HBase Backup-and-Restore Supports Bulk-Loaded Data (Technical Preview)

HDP 2.6 allows you to use incremental backups with bulk-loaded data. In HDP 2.5, bulk-
loaded data is only included in full backups. Bulk loading is a common technique for
ingesting data into HBase. Bulk-loaded data does not produce write-ahead-logs (WALs).

1.4. What's New in Apache Phoenix
Phoenix in Hortonworks Data Platform (HDP) 2.6 includes the following new features:

Phoenix Data Integrity Tool (Technical Preview)

Phoenix in HDP 2.6 has a data integrity tool to help you troubleshoot serious problems
with the system and to assist in putting Phoenix in good working condition. The tool runs a
group of diagnostics, ranging from a check to verify the existence of the SYSTEM.CATALOG
table to testing the index table’s availability.

Phoenix Indexing Improvements

Phoenix in HDP 2.6 has multiple improvements in indexing stability and performance. The
indexing tool supports incremental rebuilds and the overall indexing speed is lot faster. The

http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/ch_using_hive_view.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/ch_using_tez_view.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/ch_hbase-quota-management.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/ch_hbase_bar.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/ch_using-phoenix.html#phoenix-repair-tool

Hortonworks Data Platform August 31, 2017

3

enhancements support part of Phoenix's mission to provide better secondary indexing for
HBase data.

1.5. Druid
Druid in the HDP Stack (Technical Preview)

Druid is a high-performance, distributed datastore that delivers subsecond OLAP queries
even when you have terabytes of data and dozens of dimensions. In Hortonworks Data
Platform (HDP), Druid can be installed and configured with Ambari, just like any other HDP
component. Druid can be integrated with Apache Hive, allowing subsecond SQL queries
using any Hive-compatible tool.

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/ch_using-druid.html

Hortonworks Data Platform August 31, 2017

4

2. Data Warehousing with Apache Hive
Hortonworks Data Platform deploys Apache Hive for your Hadoop cluster.

Hive is a data warehouse infrastructure built on top of Hadoop. It provides tools to enable
easy data ETL, a mechanism to put structures on the data, and the capability for querying
and analysis of large data sets stored in Hadoop files.

Hive defines a simple SQL query language, called HiveQL, that enables users familiar with
SQL to query the data. At the same time, this language also allows programmers who are
familiar with the MapReduce framework to be able to plug in their custom mappers and
reducers to perform more sophisticated analysis that may not be supported by the built-in
capabilities of the language.

In this document:

• Content Roadmap [4]

• Features Overview [6]

• Moving Data into Apache Hive [31]

• Configuring HiveServer2 [41]

• Securing Apache Hive [47]

• Troubleshooting [57]

2.1. Content Roadmap
This roadmap provides links to the available content resources for Apache Hive.

Table 2.1. Hive Content roadmap

Task Resources Source Description

Understanding Presentations and Papers about
Hive

Apache wiki Contains meeting notes, presentations,
and whitepapers from the Apache
community.

Hive Tutorial Apache wiki Provides a basic overview of Apache Hive
and contains some examples on working
with tables, loading data, and querying
and inserting data.

Getting Started

Hive Tutorial Hortonworks Uses the Ambari HDFS file view to store
massive data files of statistics. Implements
implement Hive queries to analyze,
process, and filter that data.

Ambari Automated Install Guide Hortonworks Ambari provides an end-to-end
management and monitoring solution
for your HDP cluster. Using the Ambari
Web UI and REST APIs, you can deploy,
operate, manage configuration changes,
and monitor services for all nodes in your
cluster from a central point.

Installing and
Upgrading

Non-Ambari Cluster Installation
Guide

Hortonworks Describes the information and materials
you need to get ready to install the
Hortonworks Data Platform (HDP)
manually.

https://cwiki.apache.org/confluence/display/Hive/Presentations
https://cwiki.apache.org/confluence/display/Hive/Presentations
https://cwiki.apache.org/confluence/display/Hive/Tutorial
https://hortonworks.com/hadoop-tutorial/how-to-process-data-with-apache-hive/
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-installation/content/ch_Getting_Ready.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-installation/content/ch_getting_ready_chapter.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-installation/content/ch_getting_ready_chapter.html

Hortonworks Data Platform August 31, 2017

5

Task Resources Source Description

Ambari Upgrade Guide Hortonworks Ambari and the HDP Stack being
managed by Ambari can be upgraded
independently. This guide provides
information on: Getting ready to upgrade
Ambari and HDP, Upgrading Ambari, and
Upgrading HDP.

Non-Ambari Cluster Upgrade
Guide

Hortonworks These instructions cover the upgrade
between two minor releases. If you need
to upgrade between two maintenance
releases, follow the upgrade instructions
in the HDP Release Notes.

Installing Hive Apache wiki Describes how to install Apache Hive
separate from the HDP environment.

Configuring Hive Apache wiki Describes how to configure Apache Hive
separate from the HDP environment. Also
useful for troubleshooting Hive in HDP.

Creating your Hive View instance Hortonworks Describes how to set up and create the
Hive 1.0 or Hive 1.5 instance in Ambari.

Setting Up the Metastore Apache wiki Describes the metastore parameters.

Setting Up Hive Web Interface Apache wiki Describes the Hive Web Interface, an
alternative to using the Hive CLI, its
features, configuration and some tips and
tricks for using.

Administering

Setting Up Hive Server Apache wiki Describes how to set up the server. How
to use a client with this server is described
in the HiveServer2 Clients document.

Using Hive View 2.0 Hortonworks Shows how to use the Hive view to
browse databases, write and execute
queries, and manage jobs and history.

Moving data into Hive Hortonworks Shows the multiple ways to move data
into Hive.

Hive Operators and Functions Apache wiki Describes the Language Manual UDF.

Developing

Beeline: HiveServer2 Client Apache wiki Describes how to use the Beeline client.

Security Hadoop Security Guide Hortonworks Provides details of the security features
implemented in the Hortonworks Data
Platform (HDP).

Scheduling
Workflow

Using HDP for Workflow and
Scheduling with Oozie

Hortonworks Oozie is a server-based workflow engine
specialized in running workflow jobs with
actions that execute Hadoop jobs, such
as MapReduce, Pig, Hive, Sqoop, HDFS
operations, and sub-workflows.

High Availability High Availability for Hive
Metastore

Hortonworks Provides details for system administrators
who need to configure the Hive
Metastore service for High Availability.

Performance
Tuning

Hive Performance Tuning Guide Hortonworks Lists best practices for an HDP Hive
cluster, both for users who run interactive
queries and for users who analyze a Hive
EDW with batch processing.

Interactive
Queries with
Apache Hive LLAP

Setting up Hive LLAP

Hive LLAP on Your Cluster

YouTube video: Enable Hive LLAP
on HDP 2.6 for Interactive SQL

Hortonworks Apache Hive enables interactive and
sub-second SQL through low-latency
analytical processing (LLAP)., a new
component introduced in Hive 2.0 that
makes Hive faster by using persistent
query infrastructure and optimized data
caching.

Hive-HBase
Integration

HBaseIntegration wiki Apache wiki Describes how to integrate the two
data access components so that HiveQL

http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-upgrade/content/ambari_upgrade_guide.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-upgrade/content/ch_upgrade_2_3.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-upgrade/content/ch_upgrade_2_3.html
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Installation
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/creating_the_hive_view_instance.html
https://cwiki.apache.org/confluence/display/Hive/AdminManual+MetastoreAdmin
https://cwiki.apache.org/confluence/display/Hive/HiveWebInterface
https://cwiki.apache.org/confluence/display/Hive/AdminManual+SettingUpHiveServer
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-views/content/ch_using_hive_view.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-upgrade/content/ch_upgrade_2_3.html
https://cwiki.apache.org/confluence/display/Hive/OperatorsAndFunctions
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/ch_hdp-security-guide-overview.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-movement-and-integration/content/ch_data_movement_using_oozie.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-movement-and-integration/content/ch_data_movement_using_oozie.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hadoop-high-availability/content/ch_HA-Hive.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hadoop-high-availability/content/ch_HA-Hive.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_hive-perf-tuning-intro.html#setting-up-llap-environments-ambari
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_llap-on-cluster.html
https://www.youtube.com/watch?v=yQWV_wZYNEk
https://www.youtube.com/watch?v=yQWV_wZYNEk
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

Hortonworks Data Platform August 31, 2017

6

Task Resources Source Description

statements can access HBase tables for
both read (SELECT) and write (INSERT)
operations.

Javadocs Apache wikiReference

SQL Language Manual Apache wiki

Language reference documentation
available in the Apache wiki.

Hive Developer FAQ Apache wiki

How to Contribute Apache wiki

Hive Developer Guide Apache wiki

Plug-in Developer Kit Apache wiki

Unit Test Parallel Execution Apache wiki

Hive Architecture Overview Apache wiki

Hive Design Docs Apache wiki

Full-Text Search over All Hive
Resources

Apache wiki

Contributing

Project Bylaws Apache wiki

Resources available if you want to
contribute to the Apache community.

Hive Mailing Lists Apache wiki

Hive on Amazon Web Services Apache wiki

Other resources

Hive on Amazon Elastic
MapReduce

Apache wiki

Additional resources available.

2.2. Features Overview
The following subsections provide brief descriptions of enhancements to Apache Hive
versions 0.13 and 0.14 that are supported by the HDP distribution of Hive.

2.2.1. Temporary Tables
Temporary tables are supported in Hive 0.14 and later. A temporary table is a convenient
way for an application to automatically manage intermediate data generated during a
complex query. Rather than manually deleting tables needed only as temporary data in
a complex query, Hive automatically deletes all temporary tables at the end of the Hive
session in which they are created. The data in these tables is stored in the user's scratch
directory rather than in the Hive warehouse directory. The scratch directory effectively acts
as the data sandbox for a user, located by default in /tmp/hive-<username>.

Tip

See Apache Hive AdminManual Configuration for information about
configuration to use a non-default scratch directory.

Hive users create temporary tables using the TEMPORARY keyword:

CREATE TEMPORARY TABLE tmp1 (c1 string);
CREATE TEMPORARY TABLE tmp2 AS ...
CREATE TEMPORARY TABLE tmp3 LIKE ...

Multiple Hive users can create multiple Hive temporary tables with the same name because
each table resides in a separate session.

Temporary tables support most table options, but not all. The following features are not
supported:

http://hive.apache.org/javadocs/r1.2.2/api/index.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/HiveDeveloperFAQ
https://cwiki.apache.org/confluence/display/Hive/HowToContribute
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide
https://cwiki.apache.org/confluence/display/Hive/PluginDeveloperKit
https://cwiki.apache.org/confluence/display/Hive/Unit+Test+Parallel+Execution
https://cwiki.apache.org/confluence/display/Hive/Design
https://cwiki.apache.org/confluence/display/Hive/DesignDocs
http://search-hadoop.com/Hive
http://search-hadoop.com/Hive
https://cwiki.apache.org/confluence/display/Hive/Bylaws
http://hive.apache.org/mailing_lists.html#Users
https://cwiki.apache.org/confluence/display/Hive/HiveAws
https://cwiki.apache.org/confluence/display/Hive/HiveAmazonElasticMapReduce
https://cwiki.apache.org/confluence/display/Hive/HiveAmazonElasticMapReduce
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration

Hortonworks Data Platform August 31, 2017

7

• Partitioned columns

• Indexes

Note

A temporary table with the same name as a permanent table causes all
references to that table name to resolve to the temporary table. The user
cannot access the permanent table during that session without dropping or
renaming the temporary table.

2.2.2. Optimized Row Columnar (ORC) Format

ORC-based tables are supported in Hive 0.14.0 and later. These tables can contain more
than 1,000 columns.

For more information about how the ORC file format enhances Hive performance, see the
Maximizing Storage Resources chapter in the HDP Apache Hive Performance Tuning Guide
and LanguageManual ORC on the Apache site.

2.2.3. SQL Optimization

Cost-based optimization (CBO) of SQL queries is supported in Hive 0.13.0 and later. CBO
uses Hive table, table partition, and column statistics to create efficient query execution
plans. Efficient query plans better utilize cluster resources and improve query latency. CBO
is most useful for complex queries that contain multiple JOIN statements and for queries on
very large tables.

Note

Tables are not required to have partitions to generate CBO statistics. Column-
level CBO statistics can be generated by both partitioned and unpartitioned
tables.

CBO generates the following statistics:

Statistics Granularity Description

Table-level - Uncompressed size of table

- Number of rows

- Number of files

Column-level - Number of distinct values

- Number of NULL values

- Minimum value

- Maximum value

CBO requires column-level statistics to generate the best query execution plans. Later, when
viewing these statistics from the command line, you can choose to also include table-level
statistics that are generated by the hive.stats.autogather configuration property.
However, CBO does not use these table-level statistics to generate query execution plans.

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_maximizing-storage-resources.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Hortonworks Data Platform August 31, 2017

8

2.2.3.1. Enabling Cost-Based SQL Optimization

Hortonworks recommends that administrators always enable CBO. Set and verify the
following configuration parameters in the hive-site.xmlfile to enable cost-based
optimization of SQL queries:

Table 2.2. CBO Configuration Parameters

CBO Configuration Parameter Description Default Value

hive.cbo.enable Enables cost-based query
optimization.

False

hive.stats.autogather Enables automated gathering
of table-level statistics for newly
created tables and table partitions,
such as tables created with the
INSERT OVERWRITE statement.
The parameter does not produce
column-level statistics, such as those
generated by CBO. If disabled,
administrators must manually
generate these table-level statistics
with the ANALYZE TABLE statement.

True

The following configuration properties are not specific to CBO, but setting them to true
will also improve the performance of queries that generate statistics:

Configuration Parameter Description Default Value

hive.stats.fetch.
column.stats

Instructs Hive to collect column-level
statistics.

False

hive.compute.query.
using.stats

Instructs Hive to use statistics when
generating query plans.

False

Note

Hortonworks recommends that administrators always enable CBO.

2.2.3.2. Generating Statistics

Use the ANALYZE TABLE command to generate statistics for tables and columns. Use the
optional NoScan clause to improve query performance by preventing a scan of files on
HDFS. This option gathers only the following statistics:

• Number of files

• Size of files in bytes

ANALYZE TABLE tablename [PARTITION(partcol1[=val1], partcol2[=val2], ...)]
 COMPUTE STATISTICS [NoScan];

The following example views statistics for all partitions in the employees table. The query
also uses the NoScan clause to improve performance:

ANALYZE TABLE employees PARTITION (dt) COMPUTE STATISTICS [NoScan];

Generating Column-level Statistics:

Use the following syntax to generate statistics for columns in the employees table:

Hortonworks Data Platform August 31, 2017

9

ANALYZE TABLE tablename [PARTITION(partcol1[1=val1], partcol2[=val2], ...)]
 COMPUTE STATISTICS FOR COLUMNS [NoScan];

The following example generates statistics for all columns in the employees table:

ANALYZE TABLE employees PARTITION (dt) COMPUTE STATISTICS FOR COLUMNS;

Tip

See Using the Cost-Based Optimizer for Optimal Performance for more
information and recommended settings.

2.2.3.3. Viewing Statistics

Use the DESCRIBE statement to view statistics generated by CBO. Include
the EXTENDED keyword if you want to include statistics gathered when the
hive.stats.fetch.column.stats and hive.compute.query.using.stats
properties are enabled.

• Viewing Generated Table Statistics

• Use the following syntax to generate table statistics:

DESCRIBE [EXTENDED] tablename;

Note

The EXTENDED keyword can be used only if the
hive.stats.autogather property is enabled in the hive-site.xml
configuration file.

• The following example displays all statistics for the employees table:

DESCRIBE EXTENDED employees;

• Viewing Generated Column Statistics

• Use the following syntax to generate column statistics:

DESCRIBE FORMATTED [dbname.]tablename.columnname;

• The following example displays statistics for the region column in the employees table:

DESCRIBE FORMATTED employees.region;

Note

See Statistics in Hive on the Apache website for more information.

2.2.4. Transactions in Hive

Support for transactions in Hive 0.13 and later enables SQL atomicity of operations at the
row level rather than at the level of a table or partition. This allows a Hive client to read
from a partition at the same time that another Hive client is adding rows to the same
partition. In addition, transactions provide a mechanism for streaming clients to rapidly

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hive-performance-tuning/content/ch_cost-based-optimizer.html
https://cwiki.apache.org/confluence/display/Hive/StatsDev

Hortonworks Data Platform August 31, 2017

10

update Hive tables and partitions. Hive transactions differ from RDBMS transactions in
that each transaction has an identifier, and multiple transactions are grouped into a single
transaction batch. A streaming client requests a set of transaction IDs after connecting to
Hive and subsequently uses these transaction IDs one at a time during the initialization of
new transaction batches. Clients write one or more records for each transaction and either
commit or abort a transaction before moving to the next transaction.

ACID is an acronym for four required traits of database transactions: atomicity, consistency,
isolation, and durability.

Transaction Attribute Description

Atomicity An operation either succeeds completely or fails; it does
not leave partial data.

Consistency Once an application performs an operation, the results
of that operation are visible to the application in every
subsequent operation.

Isolation Operations by one user do not cause unexpected side
effects for other users.

Durability Once an operation is complete, it is preserved in case of
machine or system failure.

Administrators:

To use ACID-based transactions, administrators must use a transaction manager that
supports ACID and the ORC file format. See Understanding and Administering Hive
Compactions for how to set up a transaction manager.

Developers:

Developers and others utilize transactional SQL by:

Creating and Editing Hive ACID Transaction Tables in Ambari or by manually building the
tables
Coding with the INSERT ... VALUES, UPDATE, DELETE, and MERGE SQL Statements

Note

See the Hive wiki for more information about Hive's support of ACID semantics
for transactions.

2.2.4.1. Understanding and Administering Hive Compactions

Hive stores data in base files that cannot be updated by HDFS. Instead, Hive creates a
set of delta files for each transaction that alters a table or partition and stores them in a
separate delta directory. Occasionally, Hive compacts, or merges, the base and delta files.
Hive performs all compactions in the background without affecting concurrent reads and
writes of Hive clients. There are two types of compactions:

Table 2.3. Hive Compaction Types

Compaction Type Description

Minor Rewrites a set of delta files to a single delta file for a
bucket.

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

Hortonworks Data Platform August 31, 2017

11

Compaction Type Description

Major Rewrites one or more delta files and the base file as a new
base file for a bucket.

By default, Hive automatically compacts delta and base files at regular intervals. However,
Hadoop administrators can configure automatic compactions, as well as perform manual
compactions of base and delta files using the following configuration parameters in hive-
site.xml.

Table 2.4. Hive Transaction Configuration Parameters

Configuration Parameter Description

hive.txn.manager Specifies the class name of the transaction
manager used by Hive. Set this property to
org.apache.hadoop.hive.ql.lockmgr.
DbTxnManager to enable transactions. The default
value is org.apache.hadoop.hive.ql.lockmgr.
DummyTxnManager, which disables transactions.

hive.compactor.initiator.on Specifies whether to run the initiator and cleaner threads
on this Metastore instance. The default value is false.
Must be set to true for exactly one instance of the Hive
metastore service.

hive.compactor.worker.threads Specifies the number of of worker threads to run on this
Metastore instance. The default value is 0, which must
be set to greater than 0 to enable compactions. Worker
threads initialize MapReduce jobs to do compactions.
Increasing the number of worker threads decreases
the time required to compact tables after they cross a
threshold that triggers compactions. However, increasing
the number of worker threads also increases the
background load on a Hadoop cluster.

hive.compactor.worker.timeout Specifies the time period, in seconds, after which a
compaction job is failed and re-queued. The default value
is 86400 seconds, or 24 hours.

hive.compactor.check.interval Specifies the time period, in seconds, between checks to
see if any partitions require compacting. The default value
is 300 seconds. Decreasing this value reduces the time
required to start a compaction for a table or partition.
However, it also increases the background load on the
NameNode since each check requires several calls to the
NameNode.

hive.compactor.delta.num.threshold Specifies the number of delta directories in a partition
that triggers an automatic minor compaction. The default
value is 10.

hive.compactor.delta.pct.threshold Specifies the percentage size of delta files relative to the
corresponding base files that triggers an automatic major
compaction. The default value is.1, which is 10 percent.

hive.compactor.abortedtxn.threshold Specifies the number of aborted transactions on a single
partition that trigger an automatic major compaction.

2.2.4.1.1. Configuring the Hive Transaction Manager

Configure the following Hive properties to enable transactions:

• hive.txn.manager

• hive.compactor.initiator.on

• hive.compactor.worker.threads

Hortonworks Data Platform August 31, 2017

12

Tip

To disable automatic compactions for individual tables, set the
NO_AUTO_COMPACTION table property for those tables. This overrides the
configuration settings in the hive-site.xml file. However, this property does
not prevent manual compactions.

If you experience problems while enabling Hive transactions, check the Hive log file at /
tmp/hive/hive.log.

2.2.4.1.2. Performing Manual Compactions

Hive administrators use the ALTER TABLE DDL command to queue requests that compact
base and delta files for a table or partition:

ALTER TABLE tablename [PARTITION (partition_key='partition_value' [,...])]
 COMPACT 'compaction_type'

Use the SHOW COMPACTIONS command to monitor the progress of the compactions:

SHOW COMPACTIONS

Note

ALTER TABLE will compact tables even if the NO_AUTO_COMPACTION table
property is set.

The SHOW COMPACTIONS command provides the following output for each compaction:

• Database name

• Table name

• Partition name

• Major or minor compaction

• Compaction state:

• Initiated - waiting in queue

• Working - currently compacting

• Ready for cleaning - compaction completed and old files scheduled for removal

• Thread ID

• Start time of compaction

Hive administrators can also view a list of currently open and aborted transactions with the
the SHOW TRANSACTIONS command. This command provides the following output for
each transaction:

• Transaction ID

• Transaction state

Hortonworks Data Platform August 31, 2017

13

• Hive user who initiated the transaction

• Host machine where transaction was initiated

2.2.4.1.3. Lock Manager

DbLockManager, introduced in Hive 0.13, stores all transaction and related lock
information in the Hive Metastore. Heartbeats are sent regularly from lock holders and
transaction initiators to the Hive metastore to prevent stale locks and transactions. The lock
or transaction is aborted if the metastore does not receive a heartbeat within the amount
of time specified by the hive.txn.timeout configuration property. Hive administrators
use the SHOW LOCKS DDL command to view information about locks associated with
transactions.

This command provides the following output for each lock:

• Database name

• Table name

• Partition, if the table is partitioned

• Lock state:

• Acquired - transaction initiator hold the lock

• Waiting - transaction initiator is waiting for the lock

• Aborted - the lock has timed out but has not yet been cleaned

• Lock type:

• Exclusive - the lock may not be shared

• Shared_read - the lock may be shared with any number of other shared_read locks

• Shared_write - the lock may be shared by any number of other shared_read locks but
not with other shared_write locks

• Transaction ID associated with the lock, if one exists

• Last time lock holder sent a heartbeat

• Time the lock was acquired, if it has been acquired

• Hive user who requested the lock

• Host machine on which the Hive user is running a Hive client

Note

The output of the command reverts to behavior prior to Hive 0.13 if
administrators use ZooKeeper or in-memory lock managers.

2.2.4.1.4. Transaction Limitations

HDP currently has the following limitations for ACID-based transactions in Hive:

Hortonworks Data Platform August 31, 2017

14

• The BEGIN, COMMIT, and ROLLBACK SQL statements are not yet supported. All
operations are automatically committed as transactions.

• The user initiating the Hive session must have WRITE permission for the destination
partition or table.

• ZooKeeper and in-memory locks are not compatible with transactions.

• Only ORC files are supported.

• Destination tables must be bucketed and not sorted.

• The only supported isolation level is Snapshot.

2.2.4.2. Creating Hive ACID Transaction Tables

About this Task

Using Hive View 2.0 of Ambari, you can enable ACID-based transactions so that you can
create tables that support transactional SQL. Hive View 2.0 also lets you export the DDL of
the table to fully functional scripts.

Steps

1. In Ambari, select Services > Hive > Configs.

2. On the Settings subtab, set the ACID Transactions slider to On:

3. Click Save.

4. Enter an annotation about the change.

Hortonworks Data Platform August 31, 2017

15

5. If the Dependent Configurations window appears, review the recommended changes.
You can modify the settings if you need to do so for your cluster environment.

6. Open Hive View 2.0. One way that you can do this is by clicking the palette icon in the
upper right corner of the Ambari window, as shown in the following screenshot.

7. Select +NEW TABLE button > COLUMNS subtab.

8. Define the column name and data type for each column of your table. Click the
ADVANCED configuration wheel for the column to be the key column.

Hortonworks Data Platform August 31, 2017

16

9. After clicking the ADVANCED configuration wheel for the column to be set as the key
column, designate the clustering key by clicking the Clustered checkbox.

10.Click the ADVANCED subtab. Click the Transactional checkbox and enter your value for
the Number of buckets field.

11.Click the +Create button toward the bottom of the Ambari window.

12.(Optional) Click the DDL subtab to view the SQL of the table so that you can copy
it, use it as a template for other tables, and export it as a script. This can help with

Hortonworks Data Platform August 31, 2017

17

understanding and possibly reusing the DDL in a production environment where you do
not want to use a GUI tool, such as in a Beeline CLI.

2.2.4.3. INSERT ... VALUES, UPDATE, DELETE, and MERGE SQL
Statements

INSERT ... VALUES, UPDATE, DELETE, and MERGE SQL statements are supported in
Apache Hive 0.14 and later. The INSERT ... VALUES statement enables users to write
data to Apache Hive from values provided in SQL statements. The UPDATE and DELETE
statements enable users to modify and delete values already written to Hive. The MERGE
statement streamlines UPDATEs, DELETEs, and change data capture operations by
drawing on coexisting tables. All four statements support auto-commit, which means that
each statement is a separate transaction that is automatically committed after the SQL
statement is executed.

The INSERT ... VALUES, UPDATE, and DELETE statements require the following property
values in the hive-site.xml configuration file:

Configuration Property Required Value

hive.enforce.bucketing true

hive.exec.dynamic.partition.mode nonstrict

Note

Administrators must use a transaction manager that supports ACID and the
ORC file format to use transactions. See Hive Transactions for information
about configuring other properties related to use ACID-based transactions.

INSERT ... VALUES Statement

The INSERT ... VALUES statement is revised to support adding multiple values into table
columns directly from SQL statements. A valid INSERT ... VALUES statement must provide
values for each column in the table. However, users may assign null values to columns

Hortonworks Data Platform August 31, 2017

18

for which they do not want to assign a value. In addition, the PARTITION clause must be
included in the DML.

INSERT INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
 VALUES values_row [, values_row...]

In this syntax, values_row is (value [, value]) and where value is either NULL or
any SQL literal.

The following example SQL statements demonstrate several usage variations of this
statement:

CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2)) CLUSTERED
 BY (age) INTO 2 BUCKETS STORED AS ORC;

INSERT INTO TABLE students VALUES ('fred flintstone', 35, 1.28), ('barney
 rubble', 32, 2.32);

CREATE TABLE pageviews (userid VARCHAR(64), link STRING, from STRING)
 PARTITIONED BY (datestamp STRING) CLUSTERED BY (userid) INTO 256 BUCKETS
 STORED AS ORC;

INSERT INTO TABLE pageviews PARTITION (datestamp = '2014-09-23') VALUES
 ('jsmith', 'mail.com', 'sports.com'), ('jdoe', 'mail.com', null);

INSERT INTO TABLE pageviews PARTITION (datestamp) VALUES ('tjohnson',
 'sports.com', 'finance.com', '2014-09-23'), ('tlee', 'finance.com', null,
 '2014-09-21');

UPDATE Statement

Use the UPDATE statement to modify data already written to Apache Hive. Depending
on the condition specified in the optional WHERE clause, an UPDATE statement may affect
every row in a table. You must have both the SELECT and UPDATE privileges to use this
statement.

UPDATE tablename SET column = value [, column = value ...] [WHERE
 expression];

The UPDATE statement has the following limitations:

• The expression in the WHERE clause must be an expression supported by a Hive SELECT
clause.

• Partition and bucket columns cannot be updated.

• Query vectorization is automatically disabled for UPDATE statements. However, updated
tables can still be queried using vectorization.

• Subqueries are not allowed on the right side of the SET statement.

The following example demonstrates the correct usage of this statement:

UPDATE students SET name = null WHERE gpa <= 1.0;

DELETE Statement

Use the DELETE statement to delete data already written to Apache Hive.

DELETE FROM tablename [WHERE expression];

Hortonworks Data Platform August 31, 2017

19

The DELETE statement has the following limitation: query vectorization is automatically
disabled for the DELETE operation. However, tables with deleted data can still be queried
using vectorization.

The following example demonstrates the correct usage of this statement:

DELETE FROM students WHERE gpa <= 1,0;

MERGE Statement

Use the MERGE statement to efficiently perform record-level INSERT, UPDATE, and DELETE
operations within Hive tables. The MERGE statement can be a key tool of Hadoop data
management.

The MERGE statement is based on ANSI-standard SQL.

The following SQL statement is an example of valid MERGE usage:

merge into customer
using (select * from new_customer_stage) sub
on sub.id = customer.id
when matched then update set name = sub.name, state = sub.new_state
when not matched then insert values (sub.id, sub.name, sub.state);

2.2.5. SQL Compliance

This section discusses the ongoing implementation of standard SQL syntax in Hive.
Although SQL in Hive does not yet entirely support the SQL-2011 standard, versions 0.13
and 0.14 provide significant improvements to the parity between SQL as used in Hive and
SQL as used in traditional relational databases.

2.2.5.1. SQL Standard-Based Authorization with GRANT and REVOKE SQL
Statements

Secure SQL standard-based authorization using the GRANT and REVOKE SQL statements is
supported in Hive 0.13 and later. Hive provides three authorization models: SQL standard-
based authorization, storage-based authorization, and default Hive authorization.
In addition, Ranger provides centralized management of authorization for all HDP
components. Use the following procedure to manually enable standard SQL authorization:

Note

This procedure is unnecessary if your Hive administrator installed Hive using
Ambari.

1. Set the following configuration parameters in the hive-site.xml file:

Table 2.5. Configuration Parameters for Standard SQL Authorization

Configuration Parameter Required Value

hive.server2.enable.doAs false

hive.users.in.admin.role Comma-separated list of users granted the administrator
role.

Hortonworks Data Platform August 31, 2017

20

2. Start HiveServer2 with the following command-line options:

Table 2.6. HiveServer2 Command-Line Options

Command-Line Option Required Value

-hiveconf
hive.security.authorization.manager

org.apache.hadoop.hive.ql.security.
authorization.
MetaStoreAuthzAPIAuthorizerEmbedOnly

-hiveconf
hive.security.authorization.enabled

true

-hiveconf
hive.security.authenticator.manager

org.apache.hadoop.hive.ql.security.
SessionStateUserAuthenticator

-hiveconf hive.metastore.uris ''(a space inside single quotation marks)

Note

Administrators must also specify a storage-based authorization manager
for Hadoop clusters that also use storage-based authorization. The
hive.security.authorization.manager configuration property allows
multiple authorization managers in comma-delimited format, so the correct
value in this case is:

hive.security.authorization.manager=org.apache.hadoop.hive.ql.
security.authorization.StorageBasedAuthorizationProvider,

org.apache.hadoop.hive.ql.security.authorization.
MetaStoreAuthzAPIAuthorizerEmbedOnly

2.2.5.2. Subqueries

Hive supports subqueries in FROM clauses and in WHERE clauses of SQL statements. A
subquery is a SQL expression that is evaluated and returns a result set. Then that result set
is used to evaluate the parent query. The parent query is the outer query that contains
the child subquery. Subqueries in WHERE clauses are supported in Hive 0.13 and later. The
following example shows a subquery inserted into a WHERE clause:

SELECT state, net_payments
FROM transfer_payments
WHERE transfer_payments.year IN (SELECT year FROM us_census);

No configuration is required to enable execution of subqueries in Hive. The feature is
available by default. However, several restrictions exist for the use of subqueries in WHERE
clauses.

Understanding Subqueries in SQL

SQL adheres to syntax rules like any programming language. The syntax governing the use
of subqueries in WHERE clauses in SQL depends on the following concepts:

• Query Predicates and Predicate Operators

A predicate in SQL is a condition that evaluates to a Boolean value. For
example, the predicate in the preceeding example returns true for a row of the
transfer_payments table if at least one row exists in the us_census table with the

Hortonworks Data Platform August 31, 2017

21

same year as the transfer_payments row. The predicate starts with the first WHERE
keyword.

... WHERE transfer_payments.year IN (SELECT year FROM us_census);

A SQL predicate in a subquery must also contain a predicate operator. Predicate
operators specify the relationship tested in a predicate query. For example, the predicate
operator in the above example is the IN keyword.

• Aggregrated and Correlated Queries

Aggregated queries combine one or more aggregate functions, such as AVG, SUM,
and MAX, with the GROUP BY statement to group query results by one or more table
columns. In the following example, the AVG aggregate function returns the average
salary of all employees in the engineering department grouped by year:

SELECT year, AVG(salary)
FROM Employees
WHERE department = 'engineering' GROUP BY year

Note

The GROUP BY statement may be either explicit or implicit.

Correlated queries contain a query predicate with the equals (=) operator. One side of
the operator must reference at least one column from the parent query and the other
side must reference at least one column from the subquery. The following query is a
revised and correlated version of the example query that is shown at the beginning of
this section. It is a correlated query because one side of the equals predicate operator in
the subquery references the state column in the transfer_payments table in the
parent query and the other side of the operator references the state column in the
us_census table.

SELECT state, net_payments
FROM transfer_payments
WHERE EXISTS
 (SELECT year
 FROM us_census
 WHERE transfer_payments.state = us_census.state);

In contrast, an uncorrelated query does not reference any columns in the parent query.

• Conjuncts and Disjuncts

A conjunct is equivalent to the AND condition, while a disjunct is the equivalent of the
OR condition. The following subquery contains a conjunct:

... WHERE transfer_payments.year = "2010" AND us_census.state = "california"

The following subquery contains a disjunct:

... WHERE transfer_payments.year = "2010" OR us_census.state = "california"

Restrictions on Subqueries in WHERE Clauses

Subqueries in WHERE clauses have the following limitations:

Hortonworks Data Platform August 31, 2017

22

• Subqueries must appear on the right hand side of an expression.

• Nested subqueries are not supported.

• Only one subquery expression is allowed for a single query.

• Subquery predicates must appear as top level conjuncts.

• Subqueries support four logical operators in query predicates: IN, NOT IN, EXISTS, and
NOT EXISTS.

• The IN and NOT IN logical operators may select only one column in a WHERE clause
subquery.

• The EXISTS and NOT EXISTS operators must have at least one correlated predicate.

• The left side of a subquery must qualify all references to table columns.

• References to columns in the parent query are allowed only in the WHERE clause of the
subquery.

• Subquery predicates that reference a column in a parent query must use the equals (=)
predicate operator.

• Subquery predicates may not refer only to columns in the parent query.

• Correlated subqueries with an implied GROUP BY statement may return only one row.

• All unqualified references to columns in a subquery must resolve to tables in the
subquery.

• Correlated subqueries cannot contain windowing clauses.

2.2.5.3. Common Table Expressions

A common table expression (CTE) is a set of query results obtained from a simple query
specified within a WITH clause and which immediately preceeds a SELECT or INSERT
keyword. A CTE exists only within the scope of a single SQL statement. One or more CTEs
can be used with the following SQL statements:

• SELECT

• INSERT

• CREATE TABLE AS SELECT

• CREATE VIEW AS SELECT

The following example demonstrates the use of q1 as a CTE in a SELECT statement:

WITH q1 AS (SELECT key from src where key = '5')
 SELECT * from q1;

The following example demonstrates the use of q1 as a CTE in an INSERT statement:

CREATE TABLE s1 LIKE src;
 WITH q1 AS (SELECT key, value FROM src WHERE key = '5')

Hortonworks Data Platform August 31, 2017

23

 FROM q1 INSERT OVERWRITE TABLE s1 SELECT *;

The following example demonstrates the use of ql as a CTE in a CREATE TABLE AS SELECT
clause:

CREATE TABLE s2 AS WITH q1 AS (SELECT key FROM src WHERE key = '4')
 SELECT * FROM q1;

The following example demonstrates the use of q1 as a CTE in a CREATE TABLE AS VIEW
clause:

CREATE VIEW v1 AS WITH q1 AS (SELECT key FROM src WHERE key='5')
 SELECT * from q1;

CTEs are available by default in Hive 0.13. Hive administrators do not need to perform any
configuration to enable them.

Limitations of Common Table Expressions

• Recursive queries are not supported.

• The WITH clause is not supported within subquery blocks.

2.2.5.4. Quoted Identifiers in Column Names

Quoted identifiers in the names of table columns are supported in Hive 0.13 and later. An
identifier in SQL is a sequence of alphanumeric and underscore (_) characters surrounded
by backtick (`) characters. Quoted identifiers in Hive are case-insensitive. In the following
example, `x+y` and `a?b` are valid column names for a new table.

CREATE TABLE test (`x+y` String, `a?b` String);

Quoted identifiers can be used anywhere a column name is expected, including table
partitions and buckets:

CREATE TABLE partition_date-1 (key string, value string)
PARTITIONED BY (`dt+x` date, region int);

CREATE TABLE bucket_test(`key?1` string, value string)
CLUSTERED BY (`key?1`) into 5 buckets;

Note

Use a backtick character to escape a backtick character (``).

Enabling Quoted Identifiers

Set the hive.support.quoted.identifiers configuration parameter to column in
the hive-site.xml file to enable quoted identifiers in SQL column names. For Hive 0.13,
the valid values are none and column.

hive.support.quoted.identifiers = column

2.2.5.5. CHAR Data Type Support

Versions 0.13 and later support the CHAR data type. This data type simplifies the process of
migrating data from other databases. Hive ignores trailing whitespace characters for the

Hortonworks Data Platform August 31, 2017

24

CHAR data type. However, there is no consensus among database vendors on the handling
of trailing whitespaces. Before you perform a data migration to Hive, consult the following
table to avoid unexpected behavior with values for CHAR, VARCHAR, and STRING data
types.

The following table describes how several types of databases treat trailing whitespaces for
the CHAR, VARCHAR, and STRING data types:

Table 2.7. Trailing Whitespace Characters on Various Databases

Data Type Hive Oracle SQL Server MySQL Teradata

CHAR Ignore Ignore Ignore Ignore Ignore

VARCHAR Compare Compare Configurable Ignore Ignore

STRING Compare N/A N/A N/A N/A

2.2.6. Streaming Data Ingestion

Note

If you have questions regarding this feature, contact Support by logging a case
on our Hortonworks Support Portal at http://support.hortonworks.com.

Limitations

Hive 0.13 and 0.14 have the following limitations to ingesting streaming data:

• Only ORC files are supported

• Destination tables must be bucketed

• Apache Flume or Apache Storm may be used as the streaming source

2.2.7. Query Vectorization
Vectorization allows Hive to process a batch of rows together instead of processing one
row at a time. Each batch is usually an array of primitive types. Operations are performed
on the entire column vector, which improves the instruction pipelines and cache usage.
HIVE-4160 has the design document for vectorization and tracks the implementation of
many subtasks.

Enable Vectorization in Hive

To enable vectorization, set this configuration parameter:

hive.vectorized.execution.enabled=true

When vectorization is enabled, Hive examines the query and the data to determine
whether vectorization can be supported. If it cannot be supported, Hive will execute the
query with vectorization turned off.

Log Information about Vectorized Execution of Queries

The Hive client will log, at the info level, whether a query's execution is being vectorized.
More detailed logs are printed at the debug level.

https://support.hortonworks.com
https://issues.apache.org/jira/browse/HIVE-4160

Hortonworks Data Platform August 31, 2017

25

The client logs can also be configured to show up on the console.

Supported Functionality

The current implementation supports only single table read-only queries. DDL queries or
DML queries are not supported.

The supported operators are selection, filter and group by.

Partitioned tables are supported.

These data types are supported:

• tinyint

• smallint

• int

• bigint

• date

• boolean

• float

• double

• timestamp

• string

• char

• varchar

• binary

These expressions are supported:

• Comparison: >, >=, <, <=, =, !=

• Arithmetic: plus, minus, multiply, divide, modulo

• Logical: AND, OR

• Aggregates: sum, avg, count, min, max

Only the ORC file format is supported in the current implementation.

Unsupported Functionality

All datatypes, file formats, and functionality are currently unsupported.

Hortonworks Data Platform August 31, 2017

26

Two unsupported features of particular interest are the logical expression NOT, and the
cast operator. For example, a query such as select x,y from T where a = b
will not vectorize if a is integer and b is double. Although both int and double are
supported, casting of one to another is not supported.

2.2.8. Beeline versus Hive CLI

HDP supports two Hive clients: the Hive CLI and Beeline. The primary difference between
the two involves how the clients connect to Hive.

• The Hive CLI, which connects directly to HDFS and the Hive Metastore, and can be used
only on a host with access to those services.

• Beeline, which connects to HiveServer2 and requires access to only one .jar file: hive-
jdbc-<version>-standalone.jar.

Hortonworks recommends using HiveServer2 and a JDBC client (such as Beeline) as the
primary way to access Hive. This approach uses SQL standard-based authorization or
Ranger-based authorization. However, some users may wish to access Hive data from
other applications, such as Pig. For these use cases, use the Hive CLI and storage-based
authorization.

Beeline Operating Modes and HiveServer2 Transport Modes

Beeline supports the following modes of operation:

Table 2.8. Beeline Modes of Operation

Operating Mode Description

Embedded The Beeline client and the Hive installation both reside on
the same host machine. No TCP connectivity is required.

Remote Use remote mode to support multiple, concurrent
clients executing queries against the same remote
Hive installation. Remote transport mode supports
authentication with LDAP and Kerberos. It also supports
encryption with SSL. TCP connectivity is required.

Administrators may start HiveServer2 in one of the following transport modes:

Table 2.9. HiveServer2 Transport Modes

Transport Mode Description

TCP HiveServer2 uses TCP transport for sending and receiving
Thrift RPC messages.

HTTP HiveServer2 uses HTTP transport for sending and receiving
Thrift RPC messages.

While running in TCP transport mode, HiveServer2 supports the following authentication
schemes:

Table 2.10. Authentication Schemes with TCP Transport Mode

Authentication Scheme Description

Kerberos A network authentication protocol which operates that
uses the concept of 'tickets' to allow nodes in a network

Hortonworks Data Platform August 31, 2017

27

Authentication Scheme Description

to securely identify themselves. Administrators must
specify hive.server2.authentication=kerberos,
hive.server2.authentication.kerberos.principal
= hive/_HOST@YOUR-REALM.COM, and
hive.server2.authentication.kerberos.keytab
= /etc/hive/conf/hive.keytab in the hive-site.xml
configuration file to use this authentication scheme.

LDAP The Lightweight Directory Access Protocol, an application-
layer protocol that uses the concept of 'directory services'
to share information across a network. Administrators
must specify hive.server2.authentication=ldap in the
hive-site.xml configuration file to use this type of
authentication.

PAM Pluggable Authentication Modules, or PAM, allow
administrators to integrate multiple authentication
schemes into a single API. Administrators must specify
hive.server2.authentication=pam in the hive-site.xml
configuration file to use this authentication scheme.

Custom Authentication provided by a
custom implementation of the
org.apache.hive.service.auth.PasswdAuthenticationProvider
interface. The implementing class must be available in
the classpath for HiveServer2 and its name provided as
the value of the hive.server2.custom.authentication.class
property in the hive-site.xml configuration property file.

None The Beeline client performs no authentication
with HiveServer2. Administrators must specify
hive.server2.authentication=none in the hive-site.xml
configuration file to use this authentication scheme.

The next section describes the connection strings used to connect to HiveServer2 for all
possible combinations of these modes, as well as the connection string required to connect
to HiveServer2 in a secure cluster.

Connecting to Hive with Beeline

The following examples demonstrate how to use Beeline to connect to Hive for all possible
variations of these modes.

Embedded Client

Use the following syntax to connect to Hive from Beeline in embedded mode:

!connect jdbc:hive2://

Remote Client with HiveServer2 TCP Transport Mode and SASL Authentication

While running in TCP transport mode, HiveServer2 uses the Java Simple Authentication and
Security Layer (SASL) protocol to establish a security layer between the client and server.
Use the following syntax to connect to HiveServer2 in TCP mode from a remote Beeline
client:

!connect jdbc:hive2://<host>:<port>/<db>

The default port for HiveServer2 in TCP mode is 10000, and db is the name of the database
to which you want to connect.

Remote Client with HiveServer2 HTTP Transport Mode

Hortonworks Data Platform August 31, 2017

28

Use the following syntax to connect to HiveServer2 in HTTP mode from a remote Beeline
client:

!connect jdbc:hive2://<host>:<port>/<db>;hive.server2.transport.mode=
http;hive.server2.thrift.http.path=<http_endpoint>

Note

The value for <http_endpoint> can be found in the
hive.server2.thrift.http.path property in the hive-site.xml file.
If it is not listed there, use the default value cliservice.

In an environment that is secured by Kerberos, use the following syntax to connect to
HiveServer2 in HTTP mode from a remote Beeline client:

!connect jdbc:hive2://<host>:<port>/<db>;hive.server2.transport.mode=
http;hive.server2.thrift.http.path=<http_endpoint>;principal=hive/HOST@REALM

Remote Client with HiveServer2 in Secure Cluster

Use the following syntax to connect to HiveServer2 in a secure cluster from a remote
Beeline client:

!connect jdbc:hive2://<host>:<port>/<db>;principal=
<Server_Principal_of_HiveServer2>

Note

The Beeline client must have a valid Kerberos ticket in the ticket cache before
attempting to connect.

2.2.9. Hive JDBC and ODBC Drivers

Hortonworks provides Hive JDBC and ODBC drivers that let you connect to popular
Business Intelligence (BI) tools to query, analyze and visualize data stored within the
Hortonworks Data Platform.

For information about using the Hive ODBC drivers and to download a driver, on the
Hortonworks Downloads page, click Addons.

Current Hive JDBC client jars can be found on one of the edge nodes in your cluster at /
usr/hdp/current/hive-client/lib/hive-jdbc.jar after you have installed HDP,
or you can download them from Hive JDBC driver archive.

Note

Some HiveServer2 clients may need to run on a host outside of the Hadoop
cluster. These clients require access to the following .jar files to successfully
use the Hive JDBC driver in both HTTP and HTTPS modes: hive-jdbc-
<version>-standalone.jar, hadoop-common.jar, and hadoop-
auth.jar.

JDBC URLs have the following format:

https://hortonworks.com/downloads/
http://repo.hortonworks.com/content/repositories/releases/org/apache/hive/hive-jdbc/

Hortonworks Data Platform August 31, 2017

29

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>

JDBC Parameter Description

host The cluster node hosting HiveServer2.

port The port number to which HiveServer2 listens.

dbName The name of the Hive database to run the query against.

sessionConfs Optional configuration parameters for the
JDBC/ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

hiveConfs Optional configuration parameters for
Hive on the server in the following format:
<key1>=<value1>;<key2>=<key2>; ...

The configurations last for the duration of the user
session.

hiveVars Optional configuration parameters for
Hive variables in the following format:
<key1>=<value1>;<key2>=<key2>; ...

The configurations last for the duration of the user
session.

The specific JDBC connection URL for a HiveServer2 client depends on several factors:

• How is HiveServer2 deployed on the cluster?

• What type of transport does HiveServer2 use?

• Does HiveServer2 use transport-layer security?

• Is HiveServer2 configured to authenticate users?

The rest of this section describes how to use session configuration variables to format the
JDBC connection URLs for all these scenarios.

Embedded and Remote Modes

In embedded mode, HiveServer2 runs within the Hive client rather than in a separate
process. No host or port number is necessary for the JDBC connection. In remote mode,
HiveServer2 runs as a separate daemon on a specified host and port, and the JDBC client
and HiveServer2 interact using remote procedure calls with the Thrift protocol.

Embedded Mode

jdbc:hive2://

Remote Mode

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>

Note

The rest of the example JDBC connection URLs in this topic are valid only for
HiveServer2 configured in remote mode.

TCP and HTTP Transport

Hortonworks Data Platform August 31, 2017

30

The JDBC client and HiveServer2 can use either HTTP or TCP-based transport to exchange
RPC messages. Specify the transport used by HiveServer2 with the transportMode and
httpPath session configuration variables. The default transport is TCP.

transportMode Variable Value Description

http Connect to HiveServer2 using HTTP transport.

binary Connect to HiveServer2 using TCP transport.

HTTP Transport

jdbc:hive2://<host>:<port>/<dbName>;transportMode=http;httpPath=
<http_endpoint>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

Note

The JDBC driver assumes a value of cliservice if the httpPath
configuration variable is not specified.

TCP Transport

jdbc:hive2://<host>:<port>/<dbName>;<otherSessionConfs>?
<hiveConfs>#<hiveVars>

Because the default transport is TCP, there is no need to specify transportMode=binary
if TCP transport is desired.

User Authentication

HiveServer2 supports Kerberos, LDAP, Pluggable Authentication Modules (PAM), and
custom plugins for authenticating the JDBC user connecting to HiveServer2. The format
of the JDBC connection URL for authentication with Kerberos differs from the format for
other authentication models.

User Authentication Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop Quality of protection for the SASL framework. The level of
quality is negotiated between the client and server during
authentication. Used by Kerberos authentication with TCP
transport.

user Username for non-Kerberos authentication model.

password Password for non-Kerberos authentication model.

Kerberos Authentication

jdbc:hive2://<host>:<port>/<dbName>;principal=
<HiveServer2_kerberos_principal>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

Kerberos Authentication with Sasl QOP

jdbc:hive2://<host>:<port>/<dbName>;principal=
<HiveServer2_kerberos_principal>;saslQop=<qop_value>;<otherSessionConfs>?
<hiveConfs>#<hiveVars>

Non-Kerberos Authentication

Hortonworks Data Platform August 31, 2017

31

jdbc:hive2://<host>:<port>/<dbName>;user=<username>;password=
<password>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

Transport Layer Security

HiveServer2 supports SSL and Sasl QOP for transport-layer security. The format of the JDBC
connection URL for SSL differs from the format used by Sasl QOP.

SSL Variable Description

ssl Specifies whether to use SSL

sslTrustStore The path to the SSL TrustStore.

trustStorePassword The password to the SSL TrustStore.

jdbc:hive2://<host>:<port>/<dbName>;ssl=true;sslTrustStore=
<ssl_truststore_path>;trustStorePassword=
<truststore_password>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

When using TCP for transport and Kerberos for security, HiveServer2 uses Sasl QOP for
encryption rather than SSL.

Sasl QOP Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop The level of protection desired. For authentication,
checksum, and encryption, specify auth-conf. The other
valid values do not provide encryption.

jdbc:hive2://<host>:<port>/<dbName>;principal=
<HiveServer2_kerberos_principal>;saslQop=auth-conf;<otherSessionConfs>?
<hiveConfs>#<hiveVars>

2.3. Moving Data into Apache Hive
There are multiple methods of moving data into Hive. How you move the data into
Hive depends on the source format of the data and the target data format that is
required. Generally, ORC is the preferred target data format because of the performance
enhancements that it provides.

The following methods are most commonly used:

Table 2.11. Most Common Methods to Move Data into Hive

Source of Data Target Data Format in Hive Method Description

ETL for legacy systems ORC file format 1. Move data into HDFS.

2. Use an external table to move data
from HDFS to Hive.

3. Then use Hive to convert the data to
the ORC file format.

Operational SQL database ORC file format 1. Use Sqoop to import the data from
the SQL database into Hive.

2. Then use Hive to convert the data to
the ORC file format.

Hortonworks Data Platform August 31, 2017

32

Source of Data Target Data Format in Hive Method Description

Streaming source that is "append
only"

ORC file format 1. Write directly to the ORC file format
using the Hive Streaming feature.

2.3.1. Using an External Table

This is the most common way to move data into Hive when the ORC file format is required
as the target data format. Then Hive can be used to perform a fast parallel and distributed
conversion of your data into ORC. The process is shown in the following diagram:

Figure 2.1. Example: Moving .CSV Data into Hive

Moving .CSV Data into Hive

The following steps describe moving .CSV data into Hive using the method illustrated in the
above diagram with command-line operations.

1. Move .CSV data into HDFS:

a. The following is a .CSV file which contains a header line that describes the fields and
subsequent lines that contain the data:

[<username>@cn105-10 ~]$ head cars.csv
Name,Miles_per_Gallon,Cylinders,Displacement,Horsepower,Weight_in_lbs,
Acceleration,Year,Origin
"chevrolet chevelle malibu",18,8,307,130,3504,12,1970-01-01,A
"buick skylark 320",15,8,350,165,3693,11.5,1970-01-01,A
"plymouth satellite",18,8,318,150,3436,11,1970-01-01,A
"amc rebel sst",16,8,304,150,3433,12,1970-01-01,A
"ford torino",17,8,302,140,3449,10.5,1970-01-01,A
...
[<username>@cn105-10 ~]$

<username> is the user who is performing the operation. To test this example, run
with a user from your environment.

b. First, use the following command to remove the header line from the file because it is
not part of the data for the table:

[<username>@cn105-10 ~]$ sed -i 1d cars.csv

Hortonworks Data Platform August 31, 2017

33

c. Move the data to HDFS:

[<username>@cn105-10 ~]$ hdfs dfs -copyFromLocal cars.csv /user/
<username>/visdata
[<username>@cn105-10 ~]$ hdfs dfs -ls /user/<username>/visdata
Found 1 items
-rwxrwxrwx 3 <username> hdfs 22100 2015-08-12 16:16 /user/
<username>/visdata/cars.csv

2. Create an external table.

An external table is a table for which Hive does not manage storage. If you delete an
external table, only the definition in Hive is deleted. The data remains. An internal table
is a table that Hive manages. If you delete an internal table, both the definition in Hive
and the data are deleted.

The following command creates an external table:

CREATE EXTERNAL TABLE IF NOT EXISTS Cars(
 Name STRING,
 Miles_per_Gallon INT,
 Cylinders INT,
 Displacement INT,
 Horsepower INT,
 Weight_in_lbs INT,
 Acceleration DECIMAL,
 Year DATE,
 Origin CHAR(1))
 COMMENT 'Data about cars from a public database'
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 location '/user/<username>/visdata';

3. Create the ORC table.

Now, create a table that is managed by Hive with the following command:

CREATE TABLE IF NOT EXISTS mycars(
 Name STRING,
 Miles_per_Gallon INT,
 Cylinders INT,
 Displacement INT,
 Horsepower INT,
 Weight_in_lbs INT,
 Acceleration DECIMAL,
 Year DATE,
 Origin CHAR(1))
 COMMENT 'Data about cars from a public database'
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS ORC;

4. Insert the data from the external table to the Hive ORC table.

Now, use an SQL statement to move the data from the external table that you created
in Step 2 to the Hive-managed ORC table that you created in Step 3:

Hortonworks Data Platform August 31, 2017

34

INSERT OVERWRITE TABLE mycars SELECT * FROM cars;

Note

Using Hive to convert an external table into an ORC file format is very
efficient because the conversion is a parallel and distributed action, and no
standalone ORC conversion tool is necessary.

5. Verify that you imported the data into the ORC-formatted table correctly:

hive> select * from mycars limit 3;
OK
"chevrolet chevelle malibu" 18 8 307 130 3504 12 1970-01-01 A
"buick skylark 320" 15 8 350 165 3693 12 1970-01-01 A
"plymouth satellite" 18 8 318 150 3436 11 1970-01-01 A
Time taken: 0.144 seconds, Fetched: 3 row(s)

2.3.2. Using Sqoop
Sqoop is a tool that enables you to bulk import and export data from a database. You
can use Sqoop to import data into HDFS or directly into Hive. However, Sqoop can only
import data into Hive as a text file or as a SequenceFile. To use the ORC file format, you
must use a two-phase approach: first use Sqoop to move the data into HDFS, and then use
Hive to convert the data into the ORC file format as described in the above Steps 3 and 4 of
"Moving Data from HDFS to Hive Using an External Table."

For more information on using Sqoop, refer to Using Apache Sqoop to Transfer Bulk Data.

A detailed Sqoop user guide is also available on the Apache web site here.

The process for using Sqoop to move data into Hive is shown in the following diagram:

Figure 2.2. Using Sqoop to Move Data into Hive

Moving Data into Hive Using Sqoop

1. Specify the source connection information.

First, you must specify the:

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-movement-and-integration/content/ch_data_movement_using_sqoop.html
https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html

Hortonworks Data Platform August 31, 2017

35

• database URI (db.foo.com in the following example)

• database name (bar)

• connection protocol (jdbc:mysql:)

For this example, use the following command:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES

If the source database requires credentials, such as a username and password, you can
enter the password on the command line or specify a file where the password is stored.

For example:

• Enter the password on the command line:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
username <username> -P
Enter password: (hidden)

• Specify a file where the password is stored:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
username <username> --password-file ${user.home}/.password

More connection options are described in the Sqoop User Guide on the Apache web site.

2. Specify the data and the parallelism for import:

a. Specify the data simply.

Sqoop provides flexibility to specify exactly the data you want to import from the
source system:

• Import an entire table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES

• Import a subset of the columns from a table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
columns "employee_id,first_name,last_name,job_title"

• Import only the latest records by specifying them with a WHERE clause and then
that they be appended to an existing table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES
 --where "start_date > '2010-01-01'"

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
where "id > 100000" --target-dir /incremental_dataset --append

You can also use a free-form SQL statement.

b. Specify parallelism.

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_connecting_to_a_database_server

Hortonworks Data Platform August 31, 2017

36

There are three options for specifying write parallelism (number of map tasks):

• Explicitly set the number of mappers using --num-mappers. Sqoop evenly splits
the primary key range of the source table:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
num-mappers 8

In this scenario, the source table must have a primary key.

• Provide an alternate split key using --split-by. This evenly splits the data using
the alternate split key instead of a primary key:

sqoop import --connect jdbc:mysql://db.foo.com/bar --table EMPLOYEES --
split-by dept_id

This method is useful if primary keys are not evenly distributed.

• When there is not split key or primary key, the data import must be sequential.
Specify a single mapper by using --num-mappers 1 or --autoreset-to-one-
mapper.

c. Specify the data using a query.

Instead of specifying a particular table or columns, you can specify the date with a
query. You can use one of the following options:

• Explicitly specify a split-by column using --split-by and put $ CONDITIONS
that Sqoop replaces with range conditions based on the split-by key. This method
requires a target directory:

sqoop import --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id)
WHERE $CONDITIONS' --split-by a.id --target-dir /user/foo/joinresults

• Use sequential import if you cannot specify a split-by column:

sqoop import --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id)
WHERE $CONDITIONS' -m 1 --target-dir /user/foo/joinresults

To try a sample query without importing data, use the eval option to print the
results to the command prompt:

sqoop eval --connect jdbc:mysql://db.foo.com/bar --query "SELECT * FROM
 employees LIMIT 10"

3. Specify the destination for the data: HDFS or Hive.

Here is an example of specifying the HDFS target directory:

sqoop import --query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id)
WHERE $CONDITIONS' --split-by a.id --target-dir /user/foo/joinresults

If you can add text data into your Hive table, you can specify that the data be directly
added to Hive. Using --hive-import is the primary method to add text data directly
to Hive:

Hortonworks Data Platform August 31, 2017

37

sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES --
hive-import

This method creates a metastore schema after storing the text data in HDFS.

If you have already moved data into HDFS and want to add a schema, use the create-
hive-table Sqoop command:

sqoop create-hive-table (generic-args) (create-hive-table-args)

Additional options for importing data into Hive with Sqoop:

Table 2.12. Sqoop Command Options for Importing Data into Hive

Sqoop Command Option Description

--hive-home <directory> Overrides $HIVE_HOME.

--hive-import Imports tables into Hive using Hive's default delimiters if
none are explicitly set.

--hive-overwrite Overwrites existing data in the Hive table.

--create-hive-table Creates a hive table during the operation. If this option
is set and the Hive table already exists, the job will fail.
Set to false by default.

--hive-table <table_name> Specifies the table name to use when importing data
into Hive.

--hive-drop-import-delims Drops the delimiters \n, \r, and \01 from string fields
when importing data into Hive.

--hive-delims-replacement Replaces the delimiters \n, \r, and \01 from strings
fields with a user-defined string when importing data
into Hive.

--hive-partition-key Specifies the name of the Hive field on which a sharded
database is partitioned.

--hive-partition-value <value> A string value that specifies the partition key for data
imported into Hive.

--map-column-hive <map> Overrides the default mapping from SQL type to Hive
type for configured columns.

2.3.3. Incrementally Updating a Table

It is common to perform a one-time ingestion of data from an operational database to
Hive and then require incremental updates periodically. Currently, Hive does not support
SQL Merge for bulk merges from operational systems. Instead, you must perform periodic
updates as described in this section.

Note

This procedure requires change data capture from the operational database
that has a primary key and modified date field where you pulled the records
from since the last update.

Overview

This procedure combines the techniques that are described in the sections "Moving Data
from HDFS to Hive Using an External Table" and "Using Sqoop to Move Data into Hive."

Hortonworks Data Platform August 31, 2017

38

Use the following steps to incrementally update Hive tables from operational database
systems:

1. Ingest: Complete data movement from the operational database (base_table) followed
by change or update of changed records only (incremental_table).

2. Reconcile: Create a single view of the base table and change records (reconcile_view) to
reflect the latest record set.

3. Compact: Create a reporting table (reporting_table) from the reconciled view.

4. Purge: Replace the base table with the reporting table contents and delete any
previously processed change records before the next data ingestion cycle, which is
shown in the following diagram.

Figure 2.3. Data Ingestion Lifecycle

The base table is a Hive internal table, which was created during the first data ingestion.
The incremental table is a Hive external table, which likely is created from .CSV data
in HDFS. This external table contains the changes (INSERTs and UPDATEs) from the
operational database since the last data ingestion.

Note

Generally, the table is partitioned and only the latest partition is updated,
making this process more efficient.

Incrementally Updating Data in Hive

1. Ingest the data.

a. Store the base table in the ORC format in Hive.

The first time that data is ingested, you must import the entire table from the source
database. You can use Sqoop. The following example shows importing data from
Teradata:

sqoop import --connect jdbc:teradata://{host name}/Database=retail
--connection-manager org.apache.sqoop.teradata.TeradataConnManager --
username dbc
--password dbc --table SOURCE_TBL --target-dir /user/hive/base_table -m 1

b. Store this data into an ORC-formatted table using the Steps 2 - 5 shown in "Moving
Data from HDFS to Hive Using an External Table."

Hortonworks Data Platform August 31, 2017

39

The base table definition after moving it from the external table to a Hive-managed
table looks like the below example:

CREATE TABLE base_table (
 id STRING,
 field1 STRING,
 modified_date DATE)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS ORC;

c. Store the incremental table as an external table in Hive.

It is more common to be importing incremental changes since the last time data was
updated and then merging it. See the section "Using Sqoop to Move Data into Hive"
for examples of importing data with Sqoop.

In the following example, --check-column is used to fetch records newer than
last_import_date, which is the date of the last incremental data update:

sqoop import --connect jdbc:teradata://{host name}/Database=retail
--connection-manager org.apache.sqoop.teradata.TeradataConnManager
--username dbc --password dbc --table SOURCE_TBL --target-dir /user/hive/
incremental_table -m 1
--check-column modified_date --incremental lastmodified --last-value
 {last_import_date}

You can also use --query to perform the same operation:

sqoop import --connect jdbc:teradata://{host name}/Database=retail
--connection-manager org.apache.sqoop.teradata.TeradataConnManager --
username dbc
--password dbc --target-dir /user/hive/incremental_table -m 1
--query 'select * from SOURCE_TBL where modified_date >
 {last_import_date} AND $CONDITIONS’

d. After the incremental table data is moved into HDFS using Sqoop, you can define an
external Hive table over it with the following command:

CREATE EXTERNAL TABLE incremental_table (
 id STRING,
 field1 STRING,
 modified_date DATE)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 location '/user/hive/incremental_table';

2. Reconcile or merge the data.

Create a view that uses UNION ALL to merge the data and reconcile the base table
records with the new records:

Hortonworks Data Platform August 31, 2017

40

CREATE VIEW reconcile_view AS
SELECT t1.* FROM
 (SELECT * FROM base_table
 UNION ALL
 SELECT * from incremental_table) t1
JOIN
 (SELECT id, max(modified_date) max_modified FROM
 (SELECT * FROM base_table
 UNION ALL
 SELECT * from incremental_table)
 GROUP BY id) t2
ON t1.id = t2.id AND t1.modified_date = t2.max_modified;

EXAMPLES:

• Figure 2.4. Dataset after the UNION ALL Command Is Run

• Figure 2.5. Dataset in the View

Note

In the reconcile_view only one record exists per primary key, which
is shown in the id column. The values displayed in the id column
correspond to the latest modification date that is displayed in the
modified_date column.

3. Compact the data.

The view changes as soon as new data is introduced into the incremental table in HDFS
(/user/hive/incremental_table, so create and store a copy of the view as a
snapshot in time:

DROP TABLE reporting_table;
CREATE TABLE reporting_table AS
SELECT * FROM reconcile_view;

4. Purge data.

a. After you have created a reporting table, clean up the incremental updates to ensure
that the same data is not read twice:

hadoop fs –rm –r /user/hive/incremental_table/*

Hortonworks Data Platform August 31, 2017

41

b. Move the data into the ORC format as the base table. Frequently, this involves a
partition rather than the entire table:

DROP TABLE base_table;
CREATE TABLE base_table (
 id STRING,
 field1 STRING,
 modified_date DATE)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS ORC;

INSERT OVERWRITE TABLE base_table SELECT * FROM reporting_table;

Handling Deletes

Deletes can be handled by adding a DELETE_DATE field in the tables:

CREATE VIEW reconcile_view AS
 SELECT t1.* FROM
 (SELECT * FROM base_table
 UNION
 SELECT * FROM incremental_table) t1
 JOIN
 (SELECT id, max(modified_date) max_modified FROM
 (SELECT * FROM base_table
 UNION
 SELECT * FROM incremental_table)
 GROUP BY id) t2
 ON t1.id = t2.id AND t1.modified_date = t2.max_modified
 AND t1.delete_date IS NULL;

Tip

You can automate the steps to incrementally update data in Hive by using
Oozie. See "Using HDP for Workflow and Scheduling (Oozie)."

2.4. Configuring HiveServer2
HiveServer2 is a server interface that enables remote clients to execute queries against
Hive and retrieve the results. This section describes how to configure HiveServer2 for
transactions (ACID) and how to configure HiveServer2 for LDAP and for LDAP over SSL.

2.4.1. Configuring HiveServer2 for Transactions (ACID
Support)

Hive supports transactions that adhere to traditional relational database ACID
characteristics: atomicity, consistency, isolation, and durability. See the article about ACID
characteristics on Wikipedia for more information.

Limitations

Currently, ACID support in Hive has the following limitations:

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-movement-and-integration/content/ch_data_movement_using_oozie.html
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

Hortonworks Data Platform August 31, 2017

42

• BEGIN, COMMIT, and ROLLBACK are not yet supported.

• Only the ORC file format is supported.

• Transactions are configured to be off by default.

• Tables that use transactions must be bucketed. For a discussion of bucketed tables, see
the Apache site.

• Hive ACID only supports Snapshot Isolation.

• Transactions only support auto-commit mode and may include exactly one SQL
statement.

• ZooKeeper and in-memory lock managers are not compatible with transactions. See the
Apache site for a discussion of how locks are stored for transactions.

To configure HiveServer2 for transactions:

Important

• Ensure that the hive.txn.timeout property is set to the same value in
the hive-site.xml file for HiveServer2 that you configure in Step 1 below
and the hive-site.xml file for the standalone Hive metastore that you
configure in Step 2.

• The following listed properties are the minimum that are required to enable
transaction support on HiveServer2. For additional information about
configuring this feature and for information about additional configuration
parameters, see Hive Transactions on the Apache web site.

1. Set the following parameters in the hive-site.xml file:

<property>
 <name>hive.support.concurrency</name>
 <value>true</value>
</property>

<property>
 <name>hive.txn.manager</name>
 <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
</property>

<property>
 <name>name>hive.enforce.bucketing</name>
 <value>true</value>
</property>

<property>
 <name>hive.exec.dynamic.partition.mode</name>
 <value>nostrict</value>
</property>

2. Ensure that a standalone Hive metastore is running with the following parameters set in
its hive-site.xml file:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration

Hortonworks Data Platform August 31, 2017

43

<property>
 <name>hive.compactor.initiator.on</name>
 <value>true</value>
</property>

<property>
 <name>hive.compactor.worker.threads</name>
 <value><positive_number></value>
</property>

Important

These are the minimum properties required to enable transactions in the
standalone Hive metastore. See Hive Transactions on the Apache web site
for information about configuring Hive for transactions and additional
configuration parameters.

Even though HiveServer2 runs with an embedded metastore, a standalone
Hive metastore is required for ACID support to function properly. If you are
not using ACID support with HiveServer2, you do not need a standalone
metastore.

The default value for hive.compactor.worker.threads is 0. Set this to a positive
number to enable Hive transactions. Worker threads spawn MapReduce jobs to perform
compactions, but they do not perform the compactions themselves. Increasing the
number of worker threads decreases the time that it takes tables or partitions to be
compacted. However, increasing the number of worker threads also increases the
background load on the Hadoop cluster because they cause more MapReduce jobs to
run in the background.

2.4.2. Configuring HiveServer2 for LDAP and for LDAP over
SSL

HiveServer2 supports authentication with LDAP and LDAP over SSL (LDAPS).

To configure HiveServer2 to use LDAP:

1. Add the following properties to the hive-site.xml file to set the server
authentication mode to LDAP:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>

<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>

Where LDAP_URL is the access URL for your LDAP server. For example, ldap://
ldap_host_name@xyz.com:389.

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration

Hortonworks Data Platform August 31, 2017

44

2. Depending on whether or not you use Microsoft Active Directory as your directory
service, add the following additional properties to the hive-site.xml file:

• Other LDAP service types including OpenLDAP:

<property>
 <name>hive.server2.authentication.ldap.baseDN</name>
 <value>LDAP_BaseDN</value>
</property>

Where LDAP_BaseDN is the base LDAP distinguished name for your LDAP server. For
example, ou=dev, dc=xyz, dc=com.

• Active Directory (AD):

<property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>AD_Domain</value>
</property>

Where AD_Domain is the domain name of the AD server. For example,
corp.domain.com.

3. Test the LDAP authentication. For example, if you are using the Beeline client, type the
following commands at the Beeline prompt:

beeline>!connect
jdbc:hive2://node1:<port>/default:user=<LDAP_USERID>;password=
<LDAP_PASSWORD>

The Beeline client prompts for the user ID and password again. Enter those values to run
the command.

To configure HiveServer2 to use LDAP over SSL (LDAPS):

To enable Hive and the Beeline client to use LDAPS, perform the following actions.

Note

Two types of certificates can be used for LDAP over SSL with HiveServer2:

• CA Certificates, which are digital certificates that are signed by a Certificate
Authority (CA)

• Self-signed certificates

1. Add the following properties to the hive-site.xml file to set the server
authentication mode to LDAP:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>

<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>

Hortonworks Data Platform August 31, 2017

45

Where LDAP_URL is the access URL for your LDAP server. For example, ldap://
ldap_host_name@xyz.com:389.

2. Depending on whether or not you use Microsoft Active Directory as your directory
service, add the following additional properties to the hive-site.xml file:

• Other LDAP service types including OpenLDAP:

<property>
 <name>hive.server2.authentication.ldap.baseDN</name>
 <value>LDAP_BaseDN</value>
</property>

Where LDAP_BaseDN is the base LDAP distinguished name for your LDAP server. For
example, ou=dev, dc=xyz, dc=com.

• Active Directory (AD):

<property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>AD_Domain</value>
</property>

Where AD_Domain is the domain name of the AD server. For example,
corp.domain.com.

3. Depending on which type of certificate you are using, perform one of the following
actions:

• CA certificate:

If you are using a certificate that is signed by a CA, the certificate is already included
in the default Java trustStore located at ${JAVA_HOME}/jre/lib/security/
cacerts on all of your nodes. If the CA certificate is not present, you must import the
certificate to your Java cacert trustStore using the following command:

keytool -import -trustcacerts -alias <MyHiveLdaps>
-storepass <password> -noprompt -file <myCert>.pem -keystore ${JAVA_HOME}/
jre/lib/security/cacerts

If you want to import the CA certificate into another trustStore location, replace
${JAVA_HOME}/jre/lib/security/cacerts with the cacert location that you
want to use.

• Self-signed certificate:

If you are using a self-signed digital certificate, you must import it into your Java
cacert trustStore. For example, if you want to import the certificate to a Java
cacert location of /etc/pki/java/cacerts, use the following command to
import your self-signed certificate:

keytool -import -trustcacerts -alias <MyHiveLdaps>
-storepass <password> -noprompt -file <myCert>.pem -keystore /etc/pki/
java/cacerts

Hortonworks Data Platform August 31, 2017

46

4. If your trustStore is not ${JAVA_HOME}/jre/lib/security/cacerts, you must
set the HADOOP_OPTS environment variable to point to your CA certificate so that the
certificate loads when the HDP platform loads.

Note

There is no need to modify the hadoop-env template if you use the default
Java trustStore of ${JAVA_HOME}/jre/lib/security/cacerts.

To set this in Ambari:

a. In the list of services on the left, click HDFS.

b. Select the Configs tab.

c. On the Configs tab page, select the Advanced tab.

d. Scroll down, and expand the Advanced hadoop-env section.

e. Add the following configuration information to the hadoop-env template text box:

export HADOOP_OPTS="-Djava_net_preferIPv4Stack=true
-Djavax.net.ssl.trustStore=/etc/pki/java/cacerts
-Djavax.net.ssl.trustStorePassword=changeit ${HADOOP_OPTS}"

f. Click Save.

5. Restart the HDFS and Hive services.

To restart these services in Ambari:

a. Click the service name on the left margin of the page.

b. On the service page, click Service Actions.

c. Choose Restart All.

For more information about restarting components in Ambari, see "Managing Services"
in the Ambari User's Guide.

6. Test the LDAPS authentication. For example, if you are using the Beeline client, type the
following commands at the Beeline prompt:

beeline>!connect jdbc:hive2://node1:10000/default

The Beeline client prompts for the user ID and password again. Enter those values to run
the command.

Note

• Components such as Apache Knox and Apache Ranger do not use the
hadoop-env.sh template. The configuration files for these components
must be set for LDAPS and manually restarted.

• Ambari Hive View does not work with LDAP or LDAPS.

http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/ch_managing_services.html

Hortonworks Data Platform August 31, 2017

47

2.5. Securing Apache Hive
Authorization determines whether a user has the required permissions to perform select
operations, such as creating, reading, and writing data, as well as editing table metadata.
Apache Ranger provides centralized authorization for all HDP components, and Hive also
provides three authorization models. Administrators should consider the specific use case
when choosing an authorization model.

There are two primary use cases for Hive:

• Table storage layer

Many HDP components and underlying technologies, such as Apache Hive, Apache
HBase, Apache Pig, Apache MapReduce, and Apache Tez rely on Hive as a table storage
layer.

• SQL query engine

Hadoop administrators, business analysts, and data scientists use Hive to run SQL queries,
both from the Hive CLI and remotely through a client connecting to Hive through
HiveServer2. These users often configure a data analysis tool, such as Tableau, to connect
to Hive through HiveServer2.

When using a JDBC or ODBC driver, the value of the hive.server2.enable.doAs
configuration property in the hive.site.xml file determines the user account that
runs a Hive query. The value assigned to this property depends on the desired Hive
authorization model and, in the case of storage-based authorization, on the desired use
case.

Hortonworks Data Platform August 31, 2017

48

Hive LLAP and the doAs Flag

The architecture of Hive LLAP shares and caches data across many users in much the
same way as other MPP or database technologies do. As a result, older file-based security
controls do not work with this architecture and doAs is not supported with Hive LLAP.
You must use Apache Ranger security policies with a doAs=false setting to achieve
secure access via Hive LLAP, while restricting underlying file access so that Hive and other
privileged users can access it but unprivileged users cannot.

Apache Ranger and Other Authorization Models

In addition to the centralized authorization provided by Apache Ranger, Hive can use
three other authorization models:

Authorization model Secure? Fine-grained
authorization
(column, row level)

Privilege
management using
GRANT/REVOKE
statements

Centralized
management GUI

Apache Ranger Secure Yes Yes Yes

SQL standard-based Secure Yes, through
privileges on table
views

Yes No

Storage-based Secure No. Authorization
at the level of
databases, tables,
and partitions

No. Table privilege
based on HDFS
permission

No

Hive default Not secure. No
restriction on which
users can run GRANT
statements

Yes Yes No

Note

Administrators can secure the Hive CLI with Kerberos and by setting
permisssions on the HDFS directories where tables reside. The exception to
this is storage-based authorization, which does not require managing HDFS
permissions and is the most secure authorization model for the Hive CLI.

2.5.1. Authorization Using Apache Ranger Policies

Apache Ranger provides centralized policy management for authorization and auditing of
all HDP components, including Hive. All HDP components are installed with a Ranger plugin
used to intercept authorization requests for that component, as shown in the following
illustration.

Hortonworks Data Platform August 31, 2017

49

Note

Administrators who are responsible for managing access to multiple
components are strongly encouraged to use the Ranger Policy Manager
to configure authorization for Hive rather than using storage-based or SQL
standard-based authorization.

Exceptions: There are two primary use cases where administrators might choose
to integrate Ranger with SQL standard-based authorization provided by Hive:

• An administrator is responsible for Hive authentication but not
authentication for other HDP components

• An administrator wants row-level authentication for one or more table views

In the first use case, an administrator could choose any of the authorization models
provided by Hive. The second use case is possible by integrating Ranger with SQL standard-
based authorization provided by Hive. Hortonworks recommends that administrators
who use both Ranger and SQL standard-based authorization use either whitelisted
policies in the Policy Manager or GRANT and REVOKE statements in Hive, but not both.
Authentication changes made with GRANT and REVOKE statements appear as updates
to the corresponding white policy; there is no need to configure authorization both ways.
Ranger also provides an option to disable the use of GRANT and REVOKE statements.

There are two notable differences between Ranger authorization and SQL standard-based
authorization:

• Ranger does not have the concept of a role. Instead, Ranger translates roles into users
and groups.

• The ADMIN permission in Ranger is the equivalent to the WITH GRANT OPTION in SQL
standard-based authorization. However, the ADMIN permission gives the grantee the
ability to grant all permissions rather than just the permissions possessed by the grantor.
With SQL standard-based authorization, the WITH GRANT OPTION applies only to
permissions possessed by the grantor.

Hortonworks Data Platform August 31, 2017

50

For more information about using Ranger to configure Hive authorization, see the Apache
Ranger User Guide. For more information about SQL standard-based authorization, see the
following sections.

2.5.2. SQL Standard-Based Authorization
SQL standard-based authorization provides fine-grained control using GRANT and REVOKE
statements and supports row and column-level access with table views. Granting access to a
table view is safer than granting access to the underlying table. This authorization model is
disabled for the Hive command line. Secure access from the Hive CLI is not possible because
users have direct access to HDFS and can bypass SQL standard-based authorization checks
and even disable the authorization model. As the name suggests, this authorization model
mimics traditional SQL compliant authorization in relational database systems with the
GRANT and REVOKE commands. A user's privileges are checked when she runs a Hive query
or command.

For more information about the ongoing work to fully support the SQL-2011 standard, see
"SQL Compliance".

Administrators can grant roles as well as privileges. Users can belong to one or more roles.
Two roles have special meaning:

• public

• admin

All users belong to the public role. Administrators should use this role in GRANT statements
intended to grant a privilege to all users. Administrators should add users who do the work
of a database administrator to the admin role. These users have privileges to run additional
commands such as CREATE ROLE and DROP ROLE, and they can access objects without
getting explicit access rights. However, users who belong to the admin role need to run the
SET ROLE command before using the privileges of the admin role because this role is not
included with the current roles by default.

The ownership of a table, view, or database determines who is authorized to perform
certain actions. For example, the user who creates a table, view, or database becomes its
owner. In the case of tables and views, the owner gets all the privileges with the GRANT
option. Administrators can also use the ALTER DATABASE command to specify a role as the
owner of a database.

SQL standard-based authorization models consider users with access to the following
functionality as privileged:

• Hive CLI

• HDFS commands

• Pig CLI

• hadoop jar command

• MapReduce

These tools and commands do not access data through HiveServer2, so SQL standard-based
authorization cannot authorize their access. Hortonworks recommends that administrators

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/using_ranger_to_provide_authorization_in_hadoop.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/using_ranger_to_provide_authorization_in_hadoop.html

Hortonworks Data Platform August 31, 2017

51

configure storage-based authorization on the Hive Metastore server to control access to
data in Hive tables for these users. The two authorization models are compatible.

Note

Currently, SQL standard-based authorization does not poll groups from LDAP.

2.5.2.1. Configuring SQL Standard-Based Authorization

Prerequisite

You must have permission to run Hive commands as admin.

Steps

Use the following procedure to configure SQL standard-based authorization for Hive:

1. Set the following configuration properties in the hive-site.xml file to enable SQL
standard-based authorization.

• hive.server2.enable.doAs

Allows Hive queries to be run by the user who submits the query, rather than by the
hive user. Must be set to false for SQL standard-based authorization.

• hive.users.in.admin.role

Comma-separated list of users assigned to the admin role.

2. Grant the ADMIN privilege to the admin role:

GRANT admin TO USER hiveadmin;

3. Start HiveServer2 with the following command-line option settings:

Command line option Required value

hive.security.authorization.manager org.apache.hadoop.hive.ql.security.authorization.plugin.sql

hive.security.authorization.enabled true

hive.security.authenticator.manager org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator

hive.metastore.uris "" (Quotation marks surrounding a single empty space)

These properties appear in the following snippet of the hive-site.xml file:

<property>
 <name>hive.security.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.plugin.sql</ value>
</property>

<property>
 <name>hive.security.authorization.enabled</name>
 <value>true</value>
</property>

<property>
 <name>hive.security.authenticator.manager</name>

Hortonworks Data Platform August 31, 2017

52

 <value>org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator</
value>
</property>

<property>
 <name>hive.metastore.uris</name>
 <value>""</value>
</property>

2.5.3. Required Privileges for Hive Operations
Privileges apply to tables and views, but not databases. The following privileges may be
granted and revoked:

• Y = required privilege

• Y + G = required privilege and the ability to grant the privilege to other users

The privileges are required for some Hive operations, as specified in the following table.

Hive
Operation

SELECT INSERT DELETE Update Ownership Admin URI privilege
(POSIX +
ownership)

GRANT Y

REVOKE Y

SHOW
GRANT

Y

SHOW ROLE
GRANT

Y

CREATE
ROLE

Y

SET ROLE Y

DROP ROLE Y

CREATE
TABLE

Y (of
database)

DROP TABLE Y

DESCRIBE
TABLE

Y

SHOW
PARTITIONS

Y

ALTER
TABLE
LOCATION

Y Y (for new
location)

ALTER
PARTITION
LOCATION

Y Y (for new
partition
location

ALTER
TABLE ADD
PARTITION

Y Y (for
partition
location)

ALTER
TABLE DROP
PARTITION

Y

all other
ALTER
TABLE
commands

Y

Hortonworks Data Platform August 31, 2017

53

TRUNCATE
TABLE

Y

CREATE
VIEW

Y + G

ALTER VIEW
PROPERTIES

Y

ALTER VIEW
RENAME

Y

DROP VIEW
PROPERTIES

Y

DROP VIEW Y

ANALYZE
TABLE

Y Y

SHOW
COLUMNS

Y

SHOW
TABLE
STATUS

Y

SHOW
TABLE
PROPERTIES

Y

CREATE
TABLE AS
SELECT

Y (of input) Y Y (of
database)

UPDATE
TABLE

Y

CREATE
INDEX

Y (of table)

DROP INDEX Y

ALTER
INDEX
REBUILD

Y

ALTER
INDEX
PROPERTIES

Y

QUERY
(INSERT,
SELECT
queries)

Y (input) Y (output) Y (output)

LOAD Y (output) Y (output) Y (input
location)

SHOW
CREATE
TABLE

Y + G

CREATE
FUNCTION

Y

DROP
FUNCTION

Y

CREATE
MACRO

Y

DROP
MACRO

Y

MSCK
(metastore
check)

Y

Hortonworks Data Platform August 31, 2017

54

ALTER
DATABASE

Y

CREATE
DATABASE

Y (for custom
location)

EXPLAIN Y

DROP
DATABASE

Y

2.5.4. Storage-Based Authorization

As the name implies, storage-based authorization relies on the authorization provided
by the storage layer. In the case of an HDP cluster, the storage layer is HDFS, which
provides both POSIX and ACL permissions. Hive is one of many HDP components that share
storage on HDFS. HCatalog provides all of these components with a single consistent view
metadata, and this is why storage-based authorization is enabled in the Hive Metastore
server. By enabling this model on the Hive Metastore Server, Hadoop administrators
can provide consistent data and metadata authorization. The model controls access to
metadata and checks permissions on the corresponding directories of the HDFS file system.
Traditional POSIX permissions for the HDFS directories where tables reside determine access
to those tables. For example, to alter table metadata for a table stored in HDFS at /user/
hive/warehouse/mytable, a user must have WRITE permissions on that directory.
However, this authorization model doesn't support column-level security.

In addition to the traditional POSIX permissions model, HDFS also provides ACLs, or
access control lists, as described in ACLs on HDFS. An ACL consists of a set of ACL entries,
and each entry names a specific user or group and grants or denies read, write, and
execute permissions for the specified user or group. These ACLs are also based on POSIX
specifications, and they are compatible with the traditional POSIX permissions model.

HDFS ACL permissions provide administrators with authentication control over databases,
tables, and table partitions on the HDFS file system. For example, an administrator can
create a role with a set of grants on specific HDFS tables, then grant the role to a group
of users. Roles allow administrators to easily reuse permission grants. Hortonworks
recommends relying on POSIX permissions and a small number of ACLs to augment the
POSIX permissions for exceptions and edge cases.

Note

A file with an ACL incurs additional memory cost to the NameNode due to the
alternate algorithm used for permission checks on such files.

2.5.5. Configuring Storage-Based Authorization

Prerequisite

You must have admin role privileges.

Steps

1. Set the following configuration properties in the hive-site.xml file to enable
storage-based authorization:

Hortonworks Data Platform August 31, 2017

55

• Configuration Property Description

hive.security.authorization.enabled Enables or disables Hive client authorization done as
part of query compilation. This property must be set to
false in the hive-site.xml file for storage-based
authorization, as it is already enabled via checks on
metastore API calls.

hive.server2.enable.doAs Allows Hive queries to be run by the user who submits
the query rather than the Hive user. Must be set to
true for storage-based access.

hive.metastore.pre.event.listeners Enables Metastore security. Specify the following value:

org.apache.hadoop.hive.ql.security.authorization.

AuthorizationPreEventListener.

hive.security.metastore.authorization.managerThe class name of the Hive Metastore authorization
manager. Specify the following value for storage-based
authorization:

org.apache.hadoop.hive.ql.security.authorization.

StorageBasedAuthorizationProvider.

These properties appear in the following snippet of the hive-site.xml file:

<property>
 <name>hive.security.authorization.enabled</name>
 <value>false</value>
</property>

<property>
 <name>hive.security.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.
StorageBasedAuthorizationProvider</value>
</property>

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

<property>
 <name>hive.metastore.pre.event.listeners</name>
 <name>org.apache.hadoop.hive.ql.security.authorization.
AuthorizationPreEventListener</name>
</property>

<property>
 <name>hive.security.metastore.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.
StorageBasedAuthorizationProvider</value>
</property>

2. Determine the required permissions of the tables and databases in your environment.
See the "Permissions for Apache Hive Operations" section for further information.

3. Use either of the following methods to create new tables and databases with
appropriate storage-based permissions:

Hortonworks Data Platform August 31, 2017

56

• Create the table or database in the Hive CLI, then manually modify the POSIX
permissions using the HDFS file system commands.

• Use the HCatalog CLI

The HCatalog command line tool uses the same syntax as Hive, but creates the table
or database with a corresponding directory owned by the user creating it. Assigning a
group permission is also supported. However, there are known issues with the HCatalog
CLI:

• Some metadata operations do not check for authorization. See Apache JIRA
HIVE_3009 for more information.

• Hive performs authorization checks on the client, rather than the server. This allows
malicious users to circumvent these checks.

• DDL statements for managing permissions have no effect on storage-based
authorization, but they do not return error messages. See Apache JIRA HIVE-3010 for
more information.

2.5.6. Permissions for Apache Hive Operations

The following table shows the minimum permissions required for Hive operations using
storage-based authorization:

Operation Database READ
Access

Database WRITE
Access

Table READ Access Table WRITE Access

LOAD X

EXPORT X

IMPORT X

CREATE TABLE X

CREATE TABLE AS
SELECT

X X (source table)

DROP TABLE X

SELECT X

ALTER TABLE X

SHOW TABLES X

2.5.7. Row-Level Filtering and Column Masking

Row-level filtering and column masking is supported in HDP 2.5 and later versions. This
functionality allows you to filter rows from query results based on Apache Ranger policies
and the ability to mask data in query results based on Apache Ranger policies.

Row-Level Filtering

To create row-level filtering, a new type of policy has been added to Apache Ranger: Row
Level Filter. This filter is very similar to existing access policies and contains filters for specific
users, groups, and conditions. The filter must be a valid WHERE clause for the table or view.
Each table or view should have its own row-filter policy.

https://issues.apache.org/jira/browse/HIVE-3009
https://issues.apache.org/jira/browse/HIVE-3010

Hortonworks Data Platform August 31, 2017

57

Filters are evaluated in order by priority. You can exclude users, groups, and conditions
from row-level filtering.

Note

Wilcard matching of the database or table is not supported.

Column Masking

To create column masking, a new type of policy has been added to Apache Ranger:
Masking. This filter supports various types of masking including the following: show last 4
digits, show first 4 digits, hash, show only year, and NULL. You can pick the type of masking
for specific users, groups, or conditions. Each column should have its own masking policy.

Masks are evaluated in the order that they are listed in the policy. You can exclude users,
groups, or conditions from masking. HDP supports the addition of mask types through
configuration and UDFs.

Note

Wildcard matching of the database, table, or column is not supported.

For more information, refer to Row-level Filtering and Column Masking in Hive.

2.6. Troubleshooting
The following is only a small, partial list of issues and recommended solutions.

• Hive transaction queries on an Oracle database fail with the error
org.apache.hadoop.hive.ql.lockmgr.LockException: No record of
lock could be found, may have timed out

This error can be caused by a bug in the BoneCP connection pooling library. In this case,
Hortonworks recommends that you set the datanucleus.connectionPoolingType
property to dbcp so the DBCP library is used.

• Error related to character set used for MySQL: "Specified key was too long; max key
length is 767 bytes"

MySQL is the default database used by the Hive metastore. Depending on several factors,
such as the version and configuration of MySQL, Hive developers may encounter an error
message similar to the following:

An exception was thrown while adding/validating classes) : Specified key was
 too long; max key length is 767 bytes

Administrators can resolve this issue by altering the Hive metastore database to use the
Latin-1 character set, as shown in the following example:

mysql> ALTER DATABASE <metastore_database_name> character set latin1;

• Limitations when using the timestamp.formats SerDe parameter

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/ranger_row_level_filtering_and_column_masking_in_hive.html
http://www.jolbox.com
http://commons.apache.org/proper/commons-dbcp/

Hortonworks Data Platform August 31, 2017

58

The timestamp.formats SerDe parameter, introduced in HDP 2.3, produces the
following behaviors:

• Displays only 3 decimal digits when it returns values, but it accepts more decimal digits.

For example, if you run the following commands:

drop table if exists src_hbase_ts;

create table src_hbase_ts(rowkey string, ts1 string, ts2 string, ts3
 string, ts4 string)
STORED BY 'org.apache.hadoop.hive. hbase. HBaseStorageHandler' WITH
 SERDEPROPERTIES
('hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4') TBLPROPERTIES
 ('hbase.table.name' = 'hbase_ts');

insert into src_hbase_ts values ('1','2011-01-01T01:01: 01.111111111',
 '2011-01-01T01:01: 01.123456111',
'2011-01-01T01:01: 01.111111111', '2011-01-01T01:01: 01.134567890');

drop table if exists hbase_ts_1;

create external table hbase_ts_1(rowkey string, ts1 timestamp, ts2
 timestamp, ts3 timestamp, ts4 timestamp)
STORED BY 'org.apache.hadoop.hive. hbase. HBaseStorageHandler' WITH
 SERDEPROPERTIES
('hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4', 'timestamp.formats'
 = "yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSS")
TBLPROPERTIES ('hbase.table.name' = 'hbase_ts');

select * from hbase_ts_1;

The timestamp.formats parameter displays:

1 2011-01-01 01:01:01.111 2011-01-01 01:01:01.123 2011-01-01 01:01:01.111
 2011-01-01 01:01:01.134

When the expected output is:

1 2011-01-01 01:01:01.111111111 2011-01-01 01:01:01.123456111 2011-01-01
 01:01:01.111111111 2011-0

• The yyyy-MM-dd’T'HH:mm:ss.SSSSSSSSS format accepts any timestamp data
up to .SSSSSSSSS decimal digits (9 places to the left of the decimal) instead of only
reading data with .SSSSSSSSS decimal digits (9 places to the left of the decimal).

For example, if you run the following commands:

drop table if exists src_hbase_ts; create table src_hbase_ts(rowkey
 string, ts1 string, ts2 string, ts3 string, ts4 string)
STORED BY 'org.apache.hadoop. hive. hbase.HBaseStorageHandler' WITH
 SERDEPROPERTIES
('hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4') TBLPROPERTIES
 ('hbase.table.name' = 'hbase_ts');

insert into src_hbase_ts values ('1','2011-01-01T01:01: 01.111111111',
 '2011-01-01T01:01: 01.111',
'2011-01-01T01:01: 01.11', '2011-01-01T01:01:01.1');

Hortonworks Data Platform August 31, 2017

59

drop table if exists hbase_ts_1;

create external table hbase_ts_1(rowkey string, ts1 timestamp, ts2
 timestamp, ts3 timestamp, ts4 timestamp)
STORED BY 'org.apache.hadoop. hive. hbase.HBaseStorageHandler' WITH
 SERDEPROPERTIES
('hbase.columns.mapping' = 'm:ts1,m:ts2,m:ts3,m:ts4', 'timestamp.formats'
 = "yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSS")
TBLPROPERTIES ('hbase.table.name' = 'hbase_ts');

select * from hbase_ts_1;

The actual output is:

1 2011-01-01 01:01:01.111 2011-01-01 01:01:01.111 2011-01-01 01:01:01.11
 2011-01-01 01:01:01.1

When the expected output is:

1 2011-01-01 01:01:01.111 NULL NULL NULL

• DROP TABLE and DROP PARTITION do not update table content

When HDFS is encrypted and the Hadoop trash directory feature is enabled, the DROP
TABLE and DROP PARTITION commands might not update the table. In this case,
creating a table with the same name as before results in a table with old data.

When Trash is enabled, the data file for the table should be moved to the Trash bin.
If the table is inside an Encryption zone, this move operation is not allowed. For
information on HDFS, see HDFS "Data at Rest" Encryption.

To work around this, use the PURGE command, as shown in the following example.

drop table if exists hbase_ts_1 PURGE;

2.6.1. JIRAs

Issue tracking for Hive bugs and improvements can be found on the Apache Hive site.

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/configuring_hdfs_encryption.html
https://issues.apache.org/jira/browse/HIVE

Hortonworks Data Platform August 31, 2017

60

3. Enabling Efficient Execution with
Apache Pig and Apache Tez

By default, Apache Pig runs against Apache MapReduce, but administrators and scripters
can configure Pig to run against the Apache Tez execution engine to take advantage of
more efficient execution and fewer reads of HDFS. Pig supports Tez in all of the following
ways:

Command Line Use the -x command-line option: pig -x tez

Pig Properties Set the following configuration property in the conf/
pig.properties file: exectype=tez

Java Option Set the following Java Option for Pig: PIG_OPTS="-D
exectype=tez"

Users and administrators can use the same methods to configure Pig to run against the
default MapReduce execution engine.

Command Line Use the -x command-line option: pig -x mr

Pig Properties Set the following configuration property in the conf/
pig.properties file: exectype=tez

Java Option Set the following Java Option for Pig: PIG_OPTS="-D
exectype=tez"

Pig Script Use the set command: set exectype=mr;

There are some limitations to running Pig with the Tez execution engine:

• Queries that include the ORDER BY clause may run slower than if run against the
MapReduce execution engine.

• There is currently no user interface that allows users to view the execution plan for Pig
jobs running with Tez. To diagnose a failing Pig job, users must read the Application
Master and container logs.

Note

Users should configure parallelism before running Pig with Tez. If parallelism is
too low, Pig jobs will run slowly. To tune parallelism, add the PARALLEL clause
to your PIG statements.

Running a Pig-on-Tez Job with Oozie

To run a Pig job on Tez using Oozie, perform the following configurations:

• Add the following property and value to the job.properties file for the Pig-on-Tez
Oozie job:

<property>
 <name>oozie.action.sharelib.for.pig</name>
 <value>pig, hive</value>
</property>

Hortonworks Data Platform August 31, 2017

61

• Create the $OOZIE_HOME/conf/action-conf/pig directory and copy the tez-
site.xml file into it.

Hortonworks Data Platform August 31, 2017

62

4. Managing Metadata Services with
Apache HCatalog

Hortonworks Data Platform (HDP) deploys Apache HCatalog to manage the metadata
services for your Hadoop cluster.

Apache HCatalog is a table and storage management service for data created using Apache
Hadoop. This includes:

• Providing a shared schema and data type mechanism.

• Providing a table abstraction so that users need not be concerned with where or how
their data is stored.

• Providing interoperability across data processing tools such as Pig, MapReduce, and Hive.

Start the HCatalog CLI with the following command:

<hadoop-install-dir>\hcatalog-0.5.0\bin\hcat.cmd

Note

HCatalog 0.5.0 was the final version released from the Apache Incubator. In
March 2013, HCatalog graduated from the Apache Incubator and became part
of the Apache Hive project. New releases of Hive include HCatalog, starting
with Hive 0.11.0.

HCatalog includes two documentation sets:

1. General information about HCatalog

This documentation covers installation and user features. The next section, Using
HCatalog, provides links to individual documents in the HCatalog documentation set.

2. WebHCat information

WebHCat is a web API for HCatalog and related Hadoop components. The section Using
WebHCat provides links to user and reference documents, and includes a technical
update about standard WebHCat parameters.

For more details on the Apache Hive project, including HCatalog and WebHCat, see the
Using Apache Hive chapter and the following resources:

• Hive project home page

• Hive wiki home page

• Hive mailing lists

4.1. HCatalog Community Information
For details about HCatalog, see the following resources in the HCatalog documentation set:

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/ch_using-hive.html
http://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Home
http://hive.apache.org/mailing_lists.html

Hortonworks Data Platform August 31, 2017

63

• HCatalog Overview

• Installation From Tarball

• HCatalog Configuration Properties

• Load and Store Interfaces

• Input and Output Interfaces

• Reader and Writer Interfaces

• Command Line Interface

• Storage Formats

• Dynamic Partitioning

• Notification

• Storage Based Authorization

4.2. WebHCat Community Information
WebHCat provides a REST API for HCatalog and related Hadoop components.

Note

WebHCat was originally named Templeton, and both terms may still be used
interchangeably. For backward compatibility the Templeton name still appears
in URLs and log file names.

For details about WebHCat (Templeton), see the following resources:

• Overview

• Installation

• Configuration

• Reference

• Resource List

• GET :version

• GET status

• GET version

• DDL Resources: Summary and Commands

• POST mapreduce/streaming

• POST mapreduce/jar

https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BUsingHCat
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BInstallHCat
https://cwiki.apache.org/confluence/display/Hive/HCatalog+Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BLoadStore
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BInputOutput
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BReaderWriter
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BCLI
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BStorageFormats
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BDynamicPartitions
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BNotification
https://cwiki.apache.org/confluence/display/Hive/HCatalog%2BAuthorization
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BUsingWebHCat
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BInstallWebHCat
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BConfigure
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BResponseTypes
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BStatus
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BVersion
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BAllDDL
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BMapReduceStream
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BMapReduceJar

Hortonworks Data Platform August 31, 2017

64

• POST pig

• POST hive

• GET queue/:jobid

• DELETE queue/:jobid

4.3. Security for WebHCat
WebHCat currently supports two types of security:

• Default security (without additional authentication)

• Authentication by using Kerberos

Example: HTTP GET :table

The following example demonstrates how to specify the user.name parameter in an HTTP
GET request:

% curl -s 'http://localhost:50111/templeton/v1/ddl/database/default/table/
my_table?user.name=ctdean'

Example: HTTP POST :table

The following example demonstrates how to specify the user.name parameter in an HTTP
POST request

% curl -s -d user.name=ctdean \
 -d rename=test_table_2 \
 'http://localhost:50111/templeton/v1/ddl/database/default/table/
 test_table'

Security Error

If the user.name parameter is not supplied when required, the following security error is
returned:

{
 "error": "No user found. Missing user.name parameter."
}

https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BPig
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BHive
https://cwiki.apache.org/confluence/display/Hive/WebHCat%2BReference%2BJobInfo
https://cwiki.apache.org/confluence/display/Hive/WebHCat+Reference+DeleteJob

Hortonworks Data Platform August 31, 2017

65

5. Persistent Read/Write Data Access
with Apache HBase

Hortonworks Data Platform (HDP) includes the Apache HBase database, which provides
random, persistent access to data in Hadoop. This "NoSQL" database is ideal for scenarios
that require real-time analysis and tabular data for end-user applications. Apache HBase
can host big data tables because it scales linearly to handle very large (petabyte scale),
column-oriented data sets. The data store is predicated on a key-value model that supports
low latency reads, writes, and updates in a distributed environment .

As a natively nonrelational database, Apache HBase can combine data sources that use a
wide variety of structures and schemas. It is natively integrated with the Apache Hadoop
Distributed File System (HDFS) for resilient data storage and is designed for hosting very
large tables with sparse data.

In this document:

• Content Roadmap [65]

• Deploying Apache HBase [67]

• Managing Apache HBase Clusters [75]

• Backing up and Restoring Apache HBase Datasets [86]

• Medium Object (MOB) Storage Support in Apache HBase [97]

• HBase Quota Management [99]

5.1. Content Roadmap
Expand the nodes on the left-side navigation pane to browse the topics and subtopics
covered in this guide. For example, the following screenshot from the website shows that
the node for the HBase chapter is expanded and that there are four collapsed nodes under
it:

The following table provides links to Apache HBase information resources, as well as some
additional Hortonworks Data Platform (HDP) resources that can help you work with and

Hortonworks Data Platform August 31, 2017

66

develop for HBase. The table points to resources that are not contained in this HDP Data
Access Guide.

Table 5.1. HBase Content Roadmap in Other Sources

Type of Information Resources Description

Welcome to Apache HBase

(Source: Apache website)

Provides a short description of Apache HBase and
its features. Important: Do not use the Download
link on the website in place of the Hortonworks
distribution of HBase for your HDP Hadoop
deployment.

Apache HBase Architecture Overview and
Reference Guide

(Source: Apache website)

This link jumps to a summary of how HBase
relates to other parts of the Hadoop environment
and lists key HBase components. The remainder of
the website includes many different explanations,
tips, and examples.

Introduction

Why We Use HBase series posted on the
Apache Software Foundation blog:

Scalable Distributed Transactional Queues

Medium Data and Universal Data Systems

From MySQL to HBase

Investing in Big Data: Apache HBase

Contributors from different companies describe
why they use HBase, the benefits of the NoSQL
database, and case studies. These blog articles
include diagrams that illustrate how HBase
components work in the Hadoop environment.

Tutorial Quick Start - Standalone HBase

(Source: Apache website)

A getting started tutorial that walks you through
the installation and setup of a standalone HBase
instance on a local file system. The instance is for
instructional purposes only and not intended for
production use.

Installing HDP with the Ambari Web UI

(Source: Hortonworks)

Ambari provides an end-to-end management
and monitoring solution for your HDP cluster.
Using the Ambari Web UI and REST APIs, you can
deploy, operate, manage configuration changes,
and monitor services for all nodes in your cluster
from a central point.

Installing HDP manually

(Source: Hortonworks)

Describes the information and materials you need
to get ready to install HDP manually, rather than
to install with Ambari.

Upgrading HDP with Ambari

(Source: Hortonworks)

Ambari and the HDP Stack being managed by
Ambari can be upgraded independently. This
guide provides information on: Getting ready to
upgrade Ambari and HDP, Upgrading Ambari,
and Upgrading HDP.

Installation and
Upgrade

Non-Ambari Cluster Upgrade Guide

(Source: Hortonworks)

These instructions cover the upgrade between
two minor releases. If you need to upgrade
between two maintenance releases, follow the
upgrade instructions in the HDP Release Notes.

Apache HBase Performance Tuning

(Source: Apache website)

Guides you through the many factors that can
affect performance of an HBase cluster and how
you can adjust your Hadoop stack and other
architecture variables to optimize HBase for your
goals.

Performance Tuning

Tuning G1GC for Your HBase Cluster

(Source: Apache Software Foundation)

This is a detailed, step-by-step blog describing how
to tune HBase clusters by configuring the Garbage
First garbage collector (G1GC).

Monitoring HBase Service Alerts

(Source: Hortonworks)

Describes the predefined HBase service alerts that
are available in Ambari. Review the sections of the
chapter preceding "HBase Service Alerts" to learn
how to enable and modify alerts.

http://hbase.apache.org/
http://hbase.apache.org/book.html#arch.overview
http://hbase.apache.org/book.html#arch.overview
https://blogs.apache.org/hbase/entry/scalable_distributed_transactional_queues_on
https://blogs.apache.org/hbase/entry/medium_data_and_universal_data
https://blogs.apache.org/hbase/entry/imgur_notifications_from_mysql_to
https://blogs.apache.org/hbase/entry/investing_in_big_data_apache
http://hbase.apache.org/book.html#quickstart
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-installation/content/ch_Getting_Ready.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-installation/content/ch_getting_ready_chapter.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-upgrade/content/ambari_upgrade_guide.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-upgrade/content/ch_upgrade_2_3.html
http://hbase.apache.org/book.html#performance
https://blogs.apache.org/hbase/entry/tuning_g1gc_for_your_hbase
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/hbase_service_alerts.html

Hortonworks Data Platform August 31, 2017

67

Type of Information Resources Description

Using Grafana

(Source: Hortonworks)

Introduces the Grafana-based dashboards of
Ambari and how to open the dashboards for
each HDP component that is monitored with the
visualization tool. The documentation includes
a section specifically about HBase dashboards
and describes the available metrics about HBase
cluster performance.

Security Hadoop Security Guide

(Source: Hortonworks)

Describes how the security features of HDP
operate and how to configure settings depending
on your Hadoop implementation.

High Availability for HBase

(Source: Hortonworks)

Guides HBase administrators and developers on
how to leverage High Availability capabilities in
HBase.

High Availability

Enabling HBase High Availability with
Ambari

(Source: Apache Software Foundation)

Describes how to add an HBase Master
component to support High Availability.

Apache Phoenix Apache Phoenix website

(Source: Apache Software Foundation)

Apache Phoenix says "We put the SQL back in
NoSQL." This Apache community website provides
both an introduction and detailed reference
about Phoenix, which is a SQL skin for working
with HBase and other Hadoop components.

Hive-HBase
Integration

HBaseIntegration wiki

(Source: Apache wiki)

Describes how to integrate the two data access
components so that HiveQL statements can access
HBase tables for both read (SELECT) and write
(INSERT) operations.

API Reference HBase Java API

(Source: Hortonworks and Apache)

Reference documentation of HBase Java APIs as
generated by Javadoc.

5.2. Deploying Apache HBase
Apache HBase (often simply referred to as HBase) operates with many other big data
components of the Apache Hadoop environment. Some of these components might or
might not be suitable for use with the HBase deployment in your environment. However,
two components that must coexist on your HBase cluster are Apache Hadoop Distributed
File System (HDFS) and Apache ZooKeeper. These components are bundled with all HDP
distributions.

Apache Hadoop Distributed File System (HDFS) is the persistent data store that holds data
in a state that allows users and applications to quickly retrieve and write to HBase tables.
While technically it is possible to run HBase on a different distributed filesystem, the vast
majority of HBase clusters run with HDFS. HDP uses HDFS as its filesystem.

Apache ZooKeeper (or simply ZooKeeper) is a centralized service for maintaining
configuration information, naming, providing distributed synchronization, and providing
group services in Hadoop ecosystems. ZooKeeper is essential for maintaining stability for
HBase applications in the event of node failures, as well as to to store and mediate updates
to important configuration information across the Hadoop cluster.

If you want to use a SQL-like interface to work with the semistructured data of an HBase
cluster, a good complement to the other Hadoop components is Apache Phoenix (or simply
Phoenix). Phoenix is a SQL abstraction layer for interacting with HBase. Phoenix enables
you to create and interact with tables in the form of typical DDL and DML statements

http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/using_grafana.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/ch_hdp-security-guide-overview.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hadoop-high-availability/content/ch_HA-HBase.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/hbase_high_availability.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/hbase_high_availability.html
http://phoenix.apache.org
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_hbase-java-api-reference/index.html

Hortonworks Data Platform August 31, 2017

68

through its standard JDBC API. HDP supports integration of Phoenix with HBase. See
Orchestrating SQL and APIs with Apache Phoenix.

The following table defines some main HBase concepts:

HBase Concept Description

region A group of contiguous HBase table rows

Tables start with one region, with regions dynamically added as the table grows. Regions
can be spread across multiple hosts to provide load balancing and quick recovery from
failure. There are two types of regions: primary and secondary. A secondary region is a
replicated primary region located on a different RegionServer.

RegionServer Serves data requests for one or more regions

A single region is serviced by only one RegionServer, but a RegionServer may serve
multiple regions.

column family A group of semantically related columns stored together

MemStore In-memory storage for a RegionServer

RegionServers write files to HDFS after the MemStore reaches a configurable maximum
value specified with the hbase.hregion.memstore.flush.size property in the
hbase-site.xml configuration file.

Write Ahead Log (WAL) In-memory log in which operations are recorded before they are stored in the MemStore

compaction storm A short period when the operations stored in the MemStore are flushed to disk and
HBase consolidates and merges many smaller files into fewer large files

This consolidation is called compaction, and it is usually very fast. However, if many
RegionServers reach the data limit specified by the MemStore at the same time, HBase
performance might degrade from the large number of simultaneous major compactions.
You can avoid this by manually splitting tables over time.

5.2.1. Installation and Setup
You can install and configure HBase for your HDP cluster by using either of the following
methods:

• Ambari installation wizard

The wizard is the part of the Apache Ambari web-based platform that guides HDP
installation, including deploying various Hadoop components, such as HBase, depending
on the needs of your cluster. See the Ambari Install Guide.

• Manual installation

You can fetch one of the repositories bundled with HBase and install it on the command
line. See the Non-Ambari Installation Guide.

Important

Your HBase installation must be the same version as the one that is packaged
with the distribution of the HDP stack version that is deployed across your
cluster.

5.2.2. Cluster Capacity and Region Sizing
This section provides information to help you plan the capacity of an HBase cluster and the
size of its RegionServers.

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/ch_using-phoenix.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-installation/content/ch_Getting_Ready.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-installation/content/ch_getting_ready_chapter.html

Hortonworks Data Platform August 31, 2017

69

5.2.2.1. Node Count and JVM Configuration

The number of nodes in an HBase cluster is typically driven by physical size of the data set
and read/write throughput.

5.2.2.1.1. Physical Size of the Data

The physical size of data on disk is affected by the following factors:

Factor Affecting Size of Physical
Data

Description

HBase Overhead The default amount of disk space required for a single HBase table cell. Smaller
table cells require less overhead. The minimum cell size is 24 bytes and the default
maximum is 10485760 bytes.

You can customize the maximum cell size by using the
hbase.client.keyvalue.maxsize property in the hbase-site.xml configuration
file. HBase table cells are aggregated into blocks; you can configure the block size
for each column family by using the hbase.mapreduce.hfileoutputformat.blocksize
property. The default value is 65536 bytes. You can reduce this value for tables
with highly random data access patterns if you want to improve query latency.

Compression You should choose the data compression tool that is most appropriate to reducing
the physical size of your data on disk. Although HBase is not shipped with LZO due
to licensing issues, you can install LZO after installing HBase. GZIP provides better
compression than LZO but is slower. HBase also supports Snappy.

HDFS Replication HBase uses HDFS for storage, so replicating HBase data stored in HDFS affects the
total physical size of data. A typical replication factor of 3 for all HBase tables in a
cluster triples the physical size of the stored data.

RegionServer Write Ahead Log
(WAL)

The size of the Write Ahead Log, or WAL, for each RegionServer has minimal
impact on the physical size of data: typically fixed at less than half of the memory
for the RegionServer. The data size of WAL is usually not configured.

5.2.2.1.2. Read/Write Throughput

The number of nodes in an HBase cluster might also be driven by required throughput for
disk reads and writes. The throughput per node greatly depends on table cell size and data
request patterns, as well as node and cluster configuration. You can use YCSB tools to test
the throughput of a single node or a cluster to determine if read/write throughput should
drive the number of nodes in your HBase cluster. A typical throughput for write operations
for one RegionServer is 5 through 15 MB/s. Unfortunately, there is no good estimate for
read throughput, which varies greatly depending on physical data size, request patterns,
and hit rate for the block cache.

5.2.2.2. Region Count and Size

In general, an HBase cluster runs more smoothly with fewer regions. Although
administrators cannot directly configure the number of regions for a RegionServer, they
can indirectly increase the number of regions in the following ways:

• Increase the size of the MemStore for a RegionServer

• Increase the size of a region

Administrators also can increase the number of regions for a RegionServer by splitting
large regions to spread data and the request load across the cluster. HBase enables
administrators to configure each HBase table individually, which is useful when tables have
different workloads and use cases. Most region settings can be set on a per-table basis by

https://github.com/brianfrankcooper/YCSB/

Hortonworks Data Platform August 31, 2017

70

using HTableDescriptor class, as well as by using the HBase CLI. These methods override
the properties in the hbase-site.xml configuration file. For further information, see
Configuring Compactions.

Note

The HDFS replication factor defined in the previous table affects only disk usage
and should not be considered when planning the size of regions.

5.2.2.2.1. Increase MemStore size for RegionServer

Use of the RegionServer MemStore largely determines the maximum number of regions
for the RegionServer. Each region has one MemStore for each column family, which
grows to a configurable size, usually between 128 and 256 MB. Administrators specify
this size by using the hbase.hregion.memstore.flush.size property in the hbase-
site.xml configuration file. The RegionServer dedicates some fraction of total memory
to region MemStores based on the value of the hbase.regionserver.global.memstore.size
configuration property. If usage exceeds this configurable size, HBase might become
unresponsive or compaction storms might occur.

You can use the following formula to estimate the number of regions for a RegionServer:

(regionserver_memory_size) * (memstore_fraction) /
((memstore_size) * (num_column_families))

For example, assume that your environment uses the following configuration:

• RegionServer with 16 GB RAM (or 16384 MB)

• MemStore fraction of .4

• MemStore with 128 MB RAM

• One column family in table

The formula for this configuration is as follows:

(16384 MB * .4) / ((128 MB * 1) = approximately 51 regions

The easiest way to decrease the number of regions for this example RegionServer is to
increase the RAM of the memstore to 256 MB. The reconfigured RegionServer then has
approximately 25 regions, and the HBase cluster runs more smoothly if the reconfiguration
is applied to all RegionServers in the cluster. The formula can be used for multiple tables
with the same configuration by using the total number of column families in all the tables.

Note

The formula is based on the assumption that all regions are filled at
approximately the same rate. If a fraction of the cluster's regions are written to,
divide the result by this fraction.

If the data request pattern is dominated by write operations rather than read operations,
you should increase the MemStore fraction. However, this increase negatively impacts the
block cache.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html

Hortonworks Data Platform August 31, 2017

71

5.2.2.2.2. Increase Size of Region

The other way to indirectly increase the number of regions for a RegionServer is to increase
the size of the region by using the hbase.hregion.max.filesize property in the
hbase-site.xml configuration file. Administrators increase the number of regions
for a RegionServer by increasing the specified size at which new regions are dynamically
allocated.

Maximum region size is primarily limited by compactions. Very large compactions can
degrade cluster performance. The recommended maximum region size is 10 through 20
GB. For HBase clusters running version 0.90.x, the maximum recommended region size is
4 GB and the default is 256 MB. If you are unable to estimate the size of your tables, you
should retain the default value. You should increase the region size only if your table cells
tend to be 100 KB or larger.

Note

HBase 0.98 introduced stripe compactions as an experimental feature that also
enables administrators to increase the size of regions. For more information,
see Experimental: Stripe Compactions on the Apache HBase website.

5.2.2.3. Initial Tuning of the Cluster

HBase administrators typically use the following methods to initially configure the cluster:

• Increasing the request handler thread count

• Configuring the size and number of WAL files

• Configuring compactions

• Splitting tables

• Tuning JVM garbage collection in RegionServers

5.2.2.3.1. Increasing the Request Handler Thread Count

Administrators who expect their HBase cluster to experience a high volume request
pattern should increase the number of listeners generated by the RegionServers. You can
use the hbase.regionserver.handler.count property in the hbase-site.xml
configuration file to set the number higher than the default value of 30.

5.2.2.3.2. Configuring the Size and Number of WAL Files

HBase uses the Write Ahead Log, or WAL, to recover MemStore data not yet flushed
to disk if a RegionServer crashes. Administrators should configure these WAL files to be
slightly smaller than the HDFS block size. By default, an HDFS block is 64 MB and a WAL is
approximately 60 MB. You should ensure that enough WAL files are allocated to contain
the total capacity of the MemStores. Use the following formula to determine the number
of WAL files needed:

(regionserver_heap_size * memstore fraction) / (default_WAL_size)

For example, assume that your environment has the following HBase cluster configuration:

• 16 GB RegionServer heap

http://hbase.apache.org/book.html#ops.stripe

Hortonworks Data Platform August 31, 2017

72

• 0.4 MemStore fraction

• 60 MB default WAL size

The formula for this configuration is as follows:

(16384 MB * 0.4) / 60 MB = approximately 109 WAL files

Use the following properties in the hbase-site.xml configuration file to configure the
size and number of WAL files:

Configuration Property Description Default

hbase.regionserver.maxlogs Sets the maximum number of WAL
files

32

hbase.regionserver.logroll.multiplier Multiplier of HDFS block size 0.95

hbase.regionserver.hlog.blocksize Optional override of HDFS block size Value assigned to actual HDFS block
size

Note

If recovery from failure takes longer than expected, try reducing the number of
WAL files to improve performance.

5.2.2.3.3. Configuring Compactions

Administrators who expect their HBase clusters to host large amounts of data should
consider the effect that compactions have on write throughput. For write-intensive data
request patterns, administrators should consider less frequent compactions and more
store files per region. Use the hbase.hstore.compaction.min property in the hbase-
site.xml configuration file to increase the minimum number of files required to trigger
a compaction. Administrators opting to increase this value should also increase the
value assigned to the hbase.hstore.blockingStoreFiles property because more files will
accumulate.

5.2.2.3.4. Splitting Tables

Administrators can split tables during table creation based on the target number of regions
per RegionServer to avoid costly dynamic splitting as the table starts to fill. In addition, it
ensures that the regions in the pre-split table are distributed across many host machines.
Pre-splitting a table avoids the cost of compactions required to rewrite the data into
separate physical files during automatic splitting.

If a table is expected to grow very large, administrators should create at least one region
per RegionServer. However, you should not immediately split the table into the total
number of desired regions. Rather, choose a low to intermediate value. For multiple
tables, you should not create more than one region per RegionServer, especially if you are
uncertain how large the table will grow. Creating too many regions for a table that will
never exceed 100 MB is not useful; a single region can adequately service a table of this
size.

5.2.2.3.5. Tuning JVM Garbage Collection in RegionServers

A RegionServer cannot utilize a very large heap due to the cost of garbage collection.
Administrators should specify no more than 24 GB for one RegionServer.

Hortonworks Data Platform August 31, 2017

73

To tune garbage collection in HBase RegionServers for stability, make the following
configuration changes:

1. Specify the following configurations in the HBASE_REGIONSERVER_OPTS configuration
option in the /conf/hbase-env.sh file :

-XX:+UseConcMarkSweepGC
-Xmn2500m (depends on MAX HEAP SIZE, but should not be less than 1g and more
 than 4g)
-XX:PermSize=128m
-XX:MaxPermSize=128m
-XX:SurvivorRatio=4
-XX:CMSInitiatingOccupancyFraction=50
-XX:+UseCMSInitiatingOccupancyOnly
-XX:ErrorFile=/var/log/hbase/hs_err_pid%p.log
-XX:+PrintGCDetails
-XX:+PrintGCDateStamps

2. Ensure that the block cache size and the MemStore size combined do not significantly
exceed 0.5*MAX_HEAP, which is defined in the HBASE_HEAP_SIZE configuration
option of the /conf/hbase-env.sh file.

5.2.3. Enabling Multitenancy with Namepaces
A namespace is a logical grouping of tables analogous to a database or a schema in a
relational database system. With namespaces, a group of users can share access to a set of
tables but the users can be assigned different privileges. Similarly, one application can run
using the tables in a namespace simultaneously with other applications. Each group of users
and each application with access to the instance of the tables defined as a namespace is a
tenant.

A namespace can support varying ACL-based security modules that can exist among
different tenants. Read/write permissions based on groups and users with access to
one instance of the namespace function independently from the permissions in another
instance.

Unlike relational databases, HBase table names can contain a dot (.) Therefore, HBase uses
different syntax, a colon (:), as the separator between the namespace name and table
name. For example, a table with the name store1 in a namespace that is called orders
has store1:orders as a fully qualified table name. If you do not assign a table to a
namespace, then the table belongs to the special default namespace.

The namespace file, which contains the objects and data for the tables assigned to a
namespace, is stored in a subdirectory of the HBase root directory ($hbase.rootdir) on
the HDFS layer of your cluster. If $hbase.rootdir is at the default location, the path to
the namespace file and table is /apps/hbase/data/data/namespace/table_name.

Example 5.1. Simple Example of Namespace Usage

A software company develops applications with HBase. Developers and quality-assurance
(QA) engineers who are testing the code must have access to the same HBase tables
that contain sample data for testing. The HBase tables with sample data are a subset
of all HBase tables on the system. Developers and QA engineers have different goals in
their interaction with the tables and need to separate their data read/write privileges
accordingly.

Hortonworks Data Platform August 31, 2017

74

By assigning the sample-data tables to a namespace, access privileges can be provisioned
appropriately so that QA engineers do not overwrite developers' work and vice versa.
As tenants of the sample-data table namespace, when developers and QA engineers are
logged in as users of this namespace domain they do not access other HBase tables in
different domains. This helps ensure that not every user can view all tables on the HBase
cluster for the sake of security and ease-of-use.

5.2.3.1. Default HBase Namespace Actions

Tip

If you do not require multitenancy or formalized schemas for HBase data, then
do not concern yourself with namespace definitions and assignments. HBase
automatically assigns a default namespace when you create a table and do not
associate it with a namespace.

The default namespaces are the following:

hbase A namespace that is used to contain HBase internal system
tables

default A namespace that contains all other tables when you do
not assign a specific user-defined namespace

5.2.3.2. Defining and Dropping Namespaces

Important

You can assign a table to only one namespace, and you should ensure that the
table correctly belongs to the namespace before you make the association in
HBase. You cannot change the namespace that is assigned to the table later.

The HBase shell has a set of straightforward commands for creating and dropping
namespaces. You can assign a table to a namespace when you create the table.

create_namespace 'my_ns' Creates a namespace with the name my_ns.

create 'my_ns:my_table', 'fam1' Creates my_table with a column family identified as
fam1 in the my_ns namespace.

drop_namespace 'my_ns' Removes the my_ns namespace from the system. The
command only functions when there are no tables with
data that are assigned to the namespace.

5.2.4. Security Features Available in Technical Preview

The following security features are in Hortonworks Technical Preview:

• Cell-level access control lists (cell-level ACLs): These ACLs are supported in tables of HBase
0.98 and later versions.

• Column family encryption: This feature is supported in HBase 0.98 and later versions.

Hortonworks Data Platform August 31, 2017

75

Important

Cell-level ACLs and column family encryption are considered under
development. Do not use these features in your production systems. If you
have questions about these features, contact Support by logging a case on the
Hortonworks Support Portal.

5.3. Managing Apache HBase Clusters

5.3.1. Monitoring Apache HBase Clusters
If you have an Ambari-managed HBase cluster, you can monitor cluster performance
with Grafana-based dashboards. The dashboards provide graphical visualizations of
data distribution and other boilerplate performance metrics. You can hover over and
click graphs to focus on specific metrics or data sets, as well as to redraw visualizations
dynamically.

The interactive capabilities of the dashboards can help you to discover potential
bottlenecks in your system. For example, you can scan the graphs to get an overview of
cluster activity and scroll over a particular time interval to enlarge details about the activity
in the time frame to uncover when the data load is unbalanced. Another potential use case
is to help you examine if RegionServers need to be reconfigured.

See Using Grafana Dashboards in Ambari for information about how to access the
dashboards and for details about what cluster metrics are displayed.

5.3.2. Optimizing Apache HBase I/O
This section introduces HBase I/O and describes several ways to optimize HBase it.

The information in this section is oriented toward basic BlockCache and MemStore tuning.
As such, it describes only a subset of cache configuration options. HDP supports additional
BlockCache and MemStore properties, as well as other configurable performance
optimizations such as remote procedure calls (RPCs), HFile block size settings, and HFile
compaction. For a complete list of configurable properties, see the hbase-default.xml
source file in GitHub.

5.3.2.1. An Overview of HBase I/O

The following table describes several concepts related to HBase file operations and memory
(RAM) caching.

HBase Component Description

HFile An HFile contains table data, indexes over that data, and
metadata about the data.

Block An HBase block is the smallest unit of data that can be
read from an HFile. Each HFile consists of a series of blocks.
(Note: an HBase block is different from an HDFS block or
other underlying file system blocks.)

BlockCache BlockCache is the main HBase mechanism for low-latency
random read operations. BlockCache is one of two
memory cache structures maintained by HBase. When
a block is read from HDFS, it is cached in BlockCache.

https://support.hortonworks.com
https://support.hortonworks.com
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/using_grafana.html
https://github.com/hortonworks/hbase-release/blob/HDP-2.2.0.0/hbase-common/src/main/resources/hbase-default.xml
https://github.com/hortonworks/hbase-release/blob/HDP-2.2.0.0/hbase-common/src/main/resources/hbase-default.xml

Hortonworks Data Platform August 31, 2017

76

HBase Component Description

Frequent access to rows in a block cause the block to be
kept in cache, improving read performance.

MemStore MemStore ("memory store") is in-memory storage for
a RegionServer. MemStore is the second of two cache
structures maintained by HBase. MemStore improves
write performance. It accumulates data until it is full, and
then writes ("flushes") the data to a new HFile on disk.
MemStore serves two purposes: it increases the total
amount of data written to disk in a single operation, and
it retains recently written data in memory for subsequent
low-latency reads.

Write Ahead Log (WAL) The WAL is a log file that records all changes to data
until the data is successfully written to disk (MemStore is
flushed). This protects against data loss in the event of a
failure before MemStore contents are written to disk.

BlockCache and MemStore reside in random-access memory (RAM). HFiles and the Write
Ahead Log are persisted to HDFS.

The following figure shows these simplified write and read paths:

• During write operations, HBase writes to WAL and MemStore. Data is flushed from
MemStore to disk according to size limits and flush interval.

• During read operations, HBase reads the block from BlockCache or MemStore if it is
available in those caches. Otherwise, it reads from disk and stores a copy in BlockCache.

Figure 5.1. HBase Read/Write Operations

By default, BlockCache resides in an area of RAM that is managed by the Java Virtual
Machine (JVM) garbage collector; this area of memory is known as on-heap memory or

Hortonworks Data Platform August 31, 2017

77

the JVM heap. The BlockCache implementation that manages the on-heap cache is called
LruBlockCache.

If you have stringent read latency requirements and you have more than 20 GB of
RAM available on your servers for use by HBase RegionServers, consider configuring
BlockCache to use both on-heap and off-heap memory. BucketCache is the off-heap
memory equivalent to LruBlockCache in on-heap memory. Read latencies for BucketCache
tend to be less erratic than LruBlockCache for large cache loads because BucketCache (not
JVM garbage collection) manages block cache allocation. The MemStore always resides in
the on-heap memory.

Figure 5.2. Relationship among Different BlockCache Implementations and
MemStore

• Additional notes:

• BlockCache is enabled by default for all HBase tables.

• BlockCache is beneficial for both random and sequential read operations although it is of
primary consideration for random reads.

• All regions hosted by a RegionServer share the same BlockCache.

• You can turn BlockCache caching on or off per column family.

5.3.2.2. Configuring BlockCache

If you have less than 20 GB of RAM available for use by HBase, consider tailoring the
default on-heap BlockCache implementation (LruBlockCache) for your cluster.

Hortonworks Data Platform August 31, 2017

78

If you have more than 20 GB of RAM available, consider adding off-heap BlockCache
(BucketCache).

To configure either LruBlockCache or BucketCache, start by specifying the maximum
amount of on-heap RAM to allocate to the HBase RegionServers on each node. The default
is 1 GB, which is too small for production. You can alter the default allocation either with
Ambari or in a manual installation:

• Ambari: Set a value for the RegionServer maximum Java heap size.

• Manual Installation: Set the HBASE_HEAPSIZE environment variable in the hbase-
env.sh file. Specify the value in megabytes. For example, HBASE_HEAPSIZE=20480
sets the maximum on-heap memory allocation to 20 GB in hbase-env.sh. The HBase
startup script uses $HBASE_HEAPSIZE to override the default maximum JVM heap size
(-Xmx).

If you want to configure off-heap BlockCache (BucketCache) only, you are done with
configuration.

Additional On-Heap BlockCache (LruBlockCache) Configuration Steps

Determine (or estimate) the proportions of reads and writes in your workload, and use
these proportions to specify on-heap memory for BlockCache and MemStore.

The sum of the two allocations must be less than or equal to 0.8. The following table
describes the two properties :

Property Default Value Description

hfile.block.cache.size 0.4 Proportion of maximum JVM heap size (Java -Xmx setting)
to allocate to BlockCache. A value of 0.4 allocates 40% of the
maximum heap size.

hbase.regionserver.global.memstore.upperLimit0.4 Proportion of maximum JVM heap size (Java -Xmx setting)
to allocate to MemStore. A value of 0.4 allocates 40% of the
maximum heap size.

Use the following guidelines to determine the two proportions:

• The default configuration for each property is 0.4, which configures BlockCache for a
mixed workload with roughly equal proportions of random reads and writes.

• If the amount of avaiable RAM in the off-heap cache is less than 20 GB,
your workload is probably read-heavy. In this case, do not plan to configure
off-heap cache, your amount of available RAM is less than 20 GB. In this
case, increase the hfile.block.cache.size property and decrease the
hbase.regionserver.global.memstore.upperLimit property so that the
values reflect your workload proportions. These adjustments optimize read performance.

• If your workload is write-heavy, decrease the hfile.block.cache.size property
and increase the hbase.regionserver.global.memstore.upperLimit property
proportionally.

• As noted earlier, the sum of hfile.block.cache.size and
hbase.regionserver.global.memstore.upperLimit must be less than or equal
to 0.8 (80%) of the maximum Java heap size specified by HBASE_HEAPSIZE (-Xmx).

Hortonworks Data Platform August 31, 2017

79

If you allocate more than 0.8 across both caches, the HBase RegionServer process returns
an error and does not start.

• Do not set hfile.block.cache.size to zero.

At a minimum, specify a proportion that allocates enough space for HFile index blocks.
To review index block sizes, use the RegionServer Web GUI for each server.

Edit the corresponding values in your hbase-site.xml files.

Here are the default definitions:

<property>
 <name>hfile.block.cache.size</name>
 <value>0.4</value>
 <description>Percentage of maximum heap (-Xmx setting) to allocate to
 block
 cache used by HFile/StoreFile. Default of 0.4 allocates 40%.
 </description>
 </property>

 <property>
 <name>hbase.regionserver.global.memstore.upperLimit</name>
 <value>0.4</value>
 <description>Maximum size of all memstores in a region server before new
 updates are blocked and flushes are forced. Defaults to 40% of heap.
 </description>
 </property>

If you have less than 20 GB of RAM for use by HBase, you are done with the configuration
process. You should restart (or perform a rolling restart on) your cluster and check log
files for error messages. If you have more than 20 GB of RAM for use by HBase, consider
configuring the variables and properties described next.

5.3.2.2.1. Compressing BlockCache

BlockCache compression caches data and encoded data blocks in their on-disk formats,
rather than decompressing and decrypting them before caching. When compression is
enabled on a column family, more data can fit into the amount of memory dedicated to
BlockCache. Decompression is repeated every time a block is accessed, but the increase in
available cache space can have a positive impact on throughput and mean latency.

BlockCache compression is particularly useful when you have more data than RAM
allocated to BlockCache, but your compressed data can fit into BlockCache. (The savings
must be worth the increased garbage collection overhead and overall CPU load).

If your data can fit into block cache without compression, or if your workload is sensitive
to extra CPU or garbage collection overhead, we recommend against enabling BlockCache
compression.

Block cache compression is disabled by default.

Hortonworks Data Platform August 31, 2017

80

Important

Before you can use BlockCache compression on an HBase table, compression
must be enabled for the table. For more information, see Enable Compression
on a ColumnFamily on the Apache website.

To enable BlockCache compression, follow these steps:

1. Set the hbase.block.data.cachecompressed to true in the hbase-site.xml file on
each RegionServer.

2. Restart or perform a rolling restart of your cluster.

3. Check logs for error messages.

5.3.2.3. Configuring Off-Heap Memory (BucketCache)

Note

Before configuring off-heap memory, complete the tasks in the previous
"Configuring BlockCache" section.

To prepare for BucketCache configuration, compare the figure and table below before
proceeding to the "Configuring BucketCache" steps.

Figure 5.3. Diagram of Configuring BucketCache

http://hbase.apache.org/book.html#changing.compression
http://hbase.apache.org/book.html#changing.compression

Hortonworks Data Platform August 31, 2017

81

In the following table:

• The first column refers to the elements in the figure.

• The second column describes each element and, if applicable, its associated variable or
property name.

• The third column contains values and formulas.

• The fourth column computes values based on the following sample configuration
parameters:

• 128 GB for the RegionServer process (there is additional memory available for other
HDP processes)

• A workload of 75% reads, 25% writes

• HBASE_HEAPSIZE = 20 GB (20480 MB)

Note

Most of the following values are specified in megabytes; three are proportions.

Item Description Value or Formula Example

A Total physical memory for
RegionServer operations:
on-heap plus off-heap
("direct") memory (MB)

(hardware dependent) 131072

B The HBASE_HEAPSIZE (-
Xmx) property: Maximum
size of JVM heap (MB)

This value was set when the
BlockCache was configured.

Recommendation: 20480 20480

C The -XX:
MaxDirectMemorySize
option: Amount of off-
heap ("direct") memory to
allocate to HBase (MB)

A - B 131072 - 20480 = 110592

Dp The
hfile.block.cache.size
property: Proportion
of maximum JVM heap
size (HBASE_HEAPSIZE,
-Xmx) to allocate to
BlockCache. The sum
of this value plus the
hbase.regionserver.
global.memstore.size
must not exceed 0.8.

This value was set when the
BlockCache was configured.

(proportion of reads) * 0.8 0.75 * 0.8 = 0.6

Dm Maximum amount of
JVM heap to allocate to
BlockCache (MB)

B * Dp 20480 * 0.6 = 12288

Ep The
hbase.regionserver.
global.memstore.size
property: Proportion of

0.8 - Dp 0.8 - 0.6 = 0.2

Hortonworks Data Platform August 31, 2017

82

maximum JVM heap size
(HBASE_HEAPSIZE, -Xmx)
to allocate to MemStore.
The sum of this value plus
hfile.block.cache.size
must be less than or equal
to 0.8.

F Amount of off-heap
memory to reserve for other
uses (DFSClient; MB)

Recommendation: 1024 to
2048

2048

G Amount of off-heap
memory to allocate to
BucketCache (MB)

C - F 110592 - 2048 = 108544

The
hbase.bucketcache.size
property: Total amount of
memory to allocate to the
off-heap BucketCache (MB)

G 108544

The
hbase.bucketcache.
percentage.in.combinedcache
property: The proportion
of memory allocated to off-
heap BucketCache, relative
to all BlockCache (on- and
off-heap)

G / (Dm + G) 108544 / 120832 =
0.89830508474576

5.3.2.3.1. Configuring BucketCache

To configure BucketCache:

1. In the hbase-env.sh file for each RegionServer, or in the hbase-env.sh
file supplied to Ambari, set the -XX:MaxDirectMemorySize argument for
HBASE_REGIONSERVER_OPTS to the amount of direct memory you want to allocate
to HBase.

In the sample configuration, the value would be 110592m (-
XX:MaxDirectMemorySize accepts a number followed by a unit indicator; m
indicates megabytes);

HBASE_OPTS="$HBASE_OPTS -XX:MaxDirectMemorySize=110592m"

2. In the hbase-site.xml file, specify BucketCache size and percentage.

For the sample configuration, the values would be 120832 and 0.89830508474576,
respectively. You can round up the proportion. This allocates space related to the
rounding error to the (larger) off-heap memory area.

<property>
 <name>hbase.bucketcache.size</name>
 <value>108544</value>
</property>

<property>
 <name>hbase.bucketcache.percentage.in.combinedcache</name>
 <value>0.8984</value>
</property>

Hortonworks Data Platform August 31, 2017

83

3. In the hbase-site.xml file, set hbase.bucketcache.ioengine to offheap to
enable BucketCache:

<property>
 <name>hbase.bucketcache.ioengine</name>
 <value>offheap</value>
</property>

4. Restart (or perform a rolling restart on) the cluster.

It can take a minute or more to allocate BucketCache, depending on how much
memory you are allocating. Check logs for error messages.

5.3.3. Importing Data into HBase with Bulk Load

Importing data with a bulk load operation bypasses the HBase API and writes content,
properly formatted as HBase data files (HFiles), directly to the file system. Bulk load uses
fewer CPU and network resources than using the HBase API for similar work.

Note

The following recommended bulk load procedure uses Apache HCatalog and
Apache Pig.

To bulk load data into HBase:

1. Prepare the input file, as shown in the following data.tsv example input file:

row1 c1 c2
row2 c1 c2
row3 c1 c2
row4 c1 c2
row5 c1 c2
row6 c1 c2
row7 c1 c2
row8 c1 c2
row9 c1 c2
row10 c1 c2

2. Make the data available on the cluster, as shown in this continuation of the example:

hadoop fs -put data.tsv /tmp/

3. Define the HBase schema for the data, shown here as creating a script file called
simple.ddl, which contains the HBase schema for data.tsv:

CREATE TABLE simple_hcat_load_table (id STRING, c1 STRING, c2 STRING)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ('hbase.columns.mapping' = 'd:c1,d:c2')
TBLPROPERTIES ('hbase.table.name' = 'simple_hcat_load_table'
);

4. Create and register the HBase table in HCatalog:

Hortonworks Data Platform August 31, 2017

84

hcat -f simple.ddl

5. Create the import file.

The following example instructs Pig to load data from data.tsv and store it in
simple_hcat_load_table. For the purposes of this example, assume that you have
saved the following statement in a file named simple.bulkload.pig.

A = LOAD 'hdfs:///tmp/data.tsv' USING PigStorage('\t') AS (id:chararray,
 c1:chararray,
c2:chararray);
-- DUMP A;
STORE A INTO 'simple_hcat_load_table' USING org.apache.hive.hcatalog.pig.
HCatStorer();

Note

Modify the filenames and table schema for your environment.

6. Execute the following command on your HBase server machine. The command directs
Pig to populate the HBase table by using HCatalog bulkload.

pig -useHCatalog simple.bulkload.pig

5.3.4. Using Snapshots
Prior to HBase 0.94.6, the only way to back up or clone a table was to use the CopyTable
or ExportTable utility, or to copy all of the HFiles in HDFS after disabling the table.
The disadvantage of these methods is that using the first might degrade RegionServer
performance, and using the second requires you to disable the table, which means no reads
or writes can occur.

HBase snapshot support enables you to take a snapshot of a table without much impact
on RegionServers, because snapshot, clone, and restore operations do not involve
data copying. In addition, exporting a snapshot to another cluster has no impact on
RegionServers.

5.3.4.1. Configuring a Snapshot

Snapshots are enabled by default starting with HBase 0.95, To enable snapshot support in
HBase 0.94.6 up to HBase 0.95, set the hbase.snapshot.enabled property to true.
(Snapshots are enabled by default in 0.95+.)

<property>
 <name>hbase.snapshot.enabled</name>
 <value>true</value>
</property>

5.3.4.2. Taking a Snapshot

As shown in the following example, start the HBase shell and clone the table:

Hortonworks Data Platform August 31, 2017

85

$ hbase shell
hbase> snapshot 'myTable', 'myTableSnapshot-122112'

5.3.4.3. Listing Snapshots

You can list and describe all snapshots taken as follows:

$ hbase shell
hbase> list_snapshots

5.3.4.4. Deleting Snapshots

You can remove a snapshot, and the files associated with that snapshot will be removed if
they are no longer needed.

$ hbase shell
hbase> delete_snapshot 'myTableSnapshot-122112'

5.3.4.5. Cloning a Table from a Snapshot

From a snapshot you can create a new table (clone operation) that contains the same data
as the original when the snapshot was taken. The clone operation does not involve data
copies . A change to the cloned table does not impact the snapshot or the original table.

$ hbase shell
hbase> clone_snapshot 'myTableSnapshot-122112', 'myNewTestTable'

5.3.4.6. Restoring a Snapshot

The restore operation requires the table to be disabled so that it can be restored to its state
when the snapshot was taken, changing both data and schema, if required.

Important

Because replication works at the log level and snapshots work at the file system
level, after a restore, the replicas will be in a different state than the master. If
you want to use restore, you need to stop replication and redo the bootstrap.

In case of partial data loss due to client issues, you can clone the table from the
snapshot and use a MapReduce job to copy the data that you need from the
clone to the main one (instead of performing a full restore, which requires the
table to be disabled).

The following is an example of commands for a restore operation:

$ hbase shell
hbase> disable 'myTable'
hbase> restore_snapshot 'myTableSnapshot-122112'

5.3.4.7. Snapshot Operations and ACLs

If you are using security with the AccessController coprocessor, only a global administrator
can take, clone, or restore a snapshot. None of these actions capture ACL rights. Restoring

Hortonworks Data Platform August 31, 2017

86

a table preserves the ACL rights of the existing table, while cloning a table creates a new
table that has no ACL rights until the administrator adds them.

5.3.4.8. Exporting to Another Cluster

The ExportSnapshot tool copies all the data related to a snapshot (HFiles, logs, and
snapshot metadata) to another cluster. The tool executes a MapReduce job, similar to
distcp, to copy files between the two clusters. Because it works at the file system level, the
HBase cluster does not have to be online.

The HBase ExportSnapshot tool must be run as user hbase. The HBase ExportSnapshot tool
uses the temp directory specified by hbase.tmp.dir (for example, /grid/0/var/log/
hbase), created on HDFS with user hbase as the owner.

For example, to copy a snapshot called MySnapshot to an HBase cluster srv2 (hdfs://
srv2:8020/hbase) using 16 mappers, input the following:

$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot MySnapshot -
copy-to
hdfs://yourserver:8020/hbase_root_dir -mappers 16

5.4. Backing up and Restoring Apache HBase
Datasets

Important

The Apache HBase backup-and-restore feature of HDP is a technical preview
and considered under development. Do not use this feature in your production
systems. If you have questions regarding this feature, contact Support by
logging a case on the Hortonworks Support Portal.

Backup-and-restore is a standard set of operations for many databases. An effective
backup-and-restore strategy helps ensure that you can recover data in case of data loss or
failures. The HBase backup-and-restore utility helps ensure that enterprises using HBase as
a data repository can recover from these types of incidents. Another important feature of
the backup-and-restore utility is the ability to restore the database to a particular point-in-
time, commonly referred to as a snapshot.

The HBase backup-and-restore utility features both full backups and incremental backups.
A full backup is required at least once. The full backup is the foundation on which
incremental backups are applied to build iterative snapshots. Incremental backups can
be run on a schedule to capture changes over time, for example by using a Cron job.
Incremental backup is more cost effective because it only captures the changes. It also
enables you to restore the database to any incremental backup version. Furthermore,the
utilities also enable table-level data backup-and-recovery if you do not want to restore the
entire dataset of the backup.

https://support.hortonworks.com

Hortonworks Data Platform August 31, 2017

87

5.4.1. Planning a Backup-and-Restore Strategy for Your
Environment

There are a few strategies you can use to implement backup-and-restore in your
environment. The following sections show how they are implemented and identify
potential tradeoffs.

Note

HBase backup-and restore tools are currently not supported on Transparent
Data Encryption (TDE)-enabled HDFS clusters. This is related to the Apache
HBASE-16178 known issue.

5.4.1.1. Backup within a Cluster

Backup-and-restore within the same cluster is only appropriate for testing. This strategy is
not suitable for production unless the underlying HDFS layer is backed up and is reliably
recoverable.

Figure 5.4. Intracluster Backup

5.4.1.2. Dedicated HDFS Archive Cluster

This strategy provides greater fault tolerance and provides a path towards disaster
recovery. In this setting, you will store the backup on a separate HDFS cluster by supplying
the backup destination cluster’s HDFS URL to the backup utility. You should consider
backing up to a different physical location, such as a different data center.

Typically, a backup-dedicated HDFS cluster uses a more economical hardware profile.

https://issues.apache.org/jira/browse/HBASE-16178
https://issues.apache.org/jira/browse/HBASE-16178

Hortonworks Data Platform August 31, 2017

88

Figure 5.5. Backup-Dedicated HDFS Cluster

5.4.1.3. Backup to the Cloud or a Storage Vendor

Another approach to safeguarding HBase incremental backups is to store the data on
provisioned, secure servers that belong to third-party vendors and that are located off-
site. The vendor can be a public cloud provider or a storage vendor who uses a Hadoop-
compatible file system, such as S3 and other HDFS-compatible destinations.

Figure 5.6. Backup to Vendor Storage Solutions

Note

The HBase backup utility does not support backup to multiple destinations. A
workaround is to manually create copies of the backed up files from HDFS or
S3.

5.4.2. Best Practices for Backup-and-Restore
Formulate a restore strategy and test it. Before you rely on a backup-and-restore strategy
for your production environment, identify how backups must be performed, and more
importantly, how restores must be performed. Test the plan to ensure that it is workable.

At a minimum, store backup data from a production cluster on a different cluster or server.
To further safeguard the data, use a backup location that is at a different site. If you have
a unrecoverable loss of data on your primary production cluster as a result of computer

Hortonworks Data Platform August 31, 2017

89

system issues, you may be able to restore the data from a different cluster or server at the
same site. However, a disaster that destroys the whole site renders locally stored backups
useless. Consider storing the backup data and necessary resources (both computing
capacity and operator expertise) to restore the data at a site sufficiently remote from the
production site. In the case of a catastrophe at the whole primary site (fire, earthquake,
etc.), the remote backup site can be very valuable.

Secure a full backup image first. As a baseline, you must complete a full backup of HBase
data at least once before you can rely on incremental backups. The full backup should be
stored outside of the source cluster. To ensure complete dataset recovery, you must run
the restore utility with the option to restore baseline full backup. The full backup is the
foundation of your dataset. Incremental backup data is applied on top of the full backup
during the restore operation to return you to the point in time when backup was last
taken.

Define and use backup sets for groups of tables that are logical subsets of the entire dataset.
You can group tables into an object called a backup set. A backup set can save time when
you have a particular group of tables that you expect to repeatedly back up or restore.
When you create a backup set, you type table names to include in the group. The backup
set includes not only groups of related tables, but also retains the HBase backup metadata.
Afterwards, you can invoke the backup set name to indicate what tables apply to the
command execution instead of entering all the table names individually.

Document the backup-and-restore strategy, and ideally log information about each
backup. Document the whole process so that the knowledge base can transfer to new
administrators after employee turnover. As an extra safety precaution, also log the
calendar date, time, and other relevant details about the data of each backup. This
metadata can potentially help locate a particular dataset in case of source cluster failure
or primary site disaster. Maintain duplicate copies of all documentation: one copy at the
production cluster site and another at the backup location or wherever it can be accessed
by an administrator remotely from the production cluster.

5.4.3. Running the Backup-and-Restore Utility

This section details the commands and their arguments of the backup-and-restore utility, as
well as example usage based on task.

Important

Prerequisite for Non-Ambari (Manual) Installations of HDP and HBase: You must
modify the container-executor.cfg configuration file to include the
allowed.system.users=hbase property setting. No spaces are allowed in
entries of the container-executor.cfg file. Ambari-assisted installations of
HDP automatically set the property in the configuration file.

Example of a valid configuration file for backup-and-restore:

 yarn.nodemanager.log-dirs=/var/log/hadoop/mapred
 yarn.nodemanager.linux-container-executor.group=yarn
 banned.users=hdfs,yarn,mapred,bin
 allowed.system.users=hbase
 min.user.id=500

Hortonworks Data Platform August 31, 2017

90

Tip

Enter hbase backup help command in your HBase command-line interface to
access the online help that provides basic information about a command and its
options.

5.4.3.1. Creating and Maintaining a Complete Backup Image

The first step in running the backup-and-restore utilities is to perform a full backup and to
store the data in a separate image from the source. At a minimum, you must do this to get
a baseline before you can rely on incremental backups.

Important

For sites using Apache Phoenix: Include the SQL system catalog tables in the
backup. In the event that you need to restore the HBase backup, access to the
system catalog tables enable you to resume Phoenix interoperability with the
restored data.

Run the following command as hbase superuser:

hbase backup create {{ full | incremental } {backup_root_path} {[tables]
| [-set backup_set_name]}} [[-silent] | [-w number_of_workers] | [-b
bandwidth_per_worker]]

After the command finishes running, the console prints a SUCCESS or FAILURE status
message. The SUCCESS message includes a backup ID. The backup ID is the Unix time (also
known as Epoch time) that the HBase master received the backup request from the client.

Tip

Record the backup ID that appears at the end of a successful backup. In case
the source cluster fails and you need to recover the dataset with a restore
operation, having the backup ID readily available can save time.

5.4.3.1.1. Required Command-Line Arguments

"full" or "incremental" Using the full argument creates a full backup image.
The incremental argument directs the command to
create an incremental backup that has an image of data
changes since the immediately preceding backup, either
the full backup or the previous incremental backup.

backup_root_path The backup_root_path argument specifies the full
root path of where to store the backup image. Valid
prefixes are hdfs:, webhdfs:, gpfs:, and s3fs:

5.4.3.1.2. Optional Command-Line Arguments

tables Table or tables to back up. If no table is specified, all
tables are backed up. The values for this argument must
be entered directly after the backup_root_path

Hortonworks Data Platform August 31, 2017

91

argument. Specify tables in a comma-separated list.
Namespace wildcards are not supported yet, so to
backup a namespace you must enter a full list of tables in
the namespace.

-set backup_set_name The -set option invokes an existing backup set in the
command. See Using Backup Sets for the purpose and
usage of backup sets.

-silent Directs the command to not display progress and
completes execution without manual interaction.

-w number Specifies the number of parallel workers to copy data to
backup destination (for example, number of map tasks in
a MapReduce job).

-b bandwidth_per_worker Specifies the bandwidth of each worker in MB per
second.

5.4.3.1.3. Example of Usage

hbase backup create full hdfs://host5:399/data/backup SALES2,SALES3 -w 3

This command creates a full backup image of two tables, SALES2 and SALES3, in the HDFS
root path of //host5:399/data/backup. The -w option specifies that no more than
three parallel workers complete the operation.

5.4.3.2. Monitoring Backup Progress

You can monitor a running backup by running the hbase backup progress command and
specifying the backup ID as an argument.

Run the following command as hbase superuser to view the progress of a backup:

hbase backup progress {backupId}

5.4.3.2.1. Required Command-Line Argument

backupId Specifies the backup that you want to monitor by seeing the progress
information. The backup ID argument is case-sensitive.

5.4.3.2.2. Example of Usage

hbase backup progress backupId_1467823988425

This command displays the status of the specified backup.

5.4.3.3. Using Backup Sets

Backup sets can ease the administration of HBase data backups and restores by reducing
the amount of repetitive input of table names. You can group tables into a named backup
set with the hbase backup set add command. You can then use the -set option to invoke
the name of a backup set in the hbase backup create or hbase backup restore rather than
list individually every table in the group. You can have multiple backup sets.

Hortonworks Data Platform August 31, 2017

92

Note

Note the differentiation between the hbase backup set add command and the
-set option. The hbase backup set add command must be run before using
the -set option in a different command because backup sets must be named
and defined before using backup sets as shortcuts.

If you run the hbase backup set add command and specify a backup set name that does
not yet exist on your system, a new set is created. If you run the command with the name
of an existing backup set name, then the tables that you specify are added to the set.

In the command, the backup set name is case-sensitive.

Important

The metadata of backup sets are stored within HBase. If you do not have access
to the original HBase cluster with the backup set metadata, then you must
specify individual table names to restore the data.

To create a backup set, run the following command as hbase superuser:

hbase backup set {[add] | [remove] | [list] | [describe] | [delete]}
backup_set_name tables

5.4.3.3.1. Subcommands

The following list details subcommands of the hbase backup set command.

Note

You must enter one (and no more than one) of the following subcommands
after hbase backup set to complete an operation. Also, the backup set name is
case-sensitive in the command-line utility.

add Add tables to a backup set. Specify a backup_set_name value after this
argument to create a backup set.

remove Removes tables from the set. Specify the tables to remove in the tables
argument.

list Lists all backup sets.

describe Use this subcommand to display on the screen a description of a backup set.
The information includes whether the set has full or incremental backups,
start and end times of the backups, and a list of the tables in the set. This
subcommand must precede a valid value for the backup_set_name value.

delete Deletes a backup set. Enter the value for the backup_set_name option
directly after the hbase backup set delete command.

5.4.3.3.2. Optional Command-Line Arguments

backup_set_name Use to assign or invoke a backup set name. The backup set name
must contain only printable characters and cannot have any spaces.

Hortonworks Data Platform August 31, 2017

93

tables List of tables (or a single table) to include in the backup set. Enter
the table names as a comma-separated list. If no tables are specified,
all tables are included in the set.

Tip

Maintain a log or other record of the case-sensitive backup set names and the
corresponding tables in each set on a separate or remote cluster, mirroring your
backup strategy. This information can help you in case of failure on the primary
cluster.

5.4.3.3.3. Example of Usage

hbase backup set add Q1Data TEAM_3,TEAM_4

Depending on the environment, this command results in one of the following actions:

• If the Q1Data backup set does not exist, a backup set containing tables TEAM_3 and
TEAM_4 is created.

• If the Q1Data backup set exists already, the tables TEAM_3 and TEAM_4 are added to
the Q1Data backup set.

5.4.3.4. Restoring a Backup Image

Run the following command as hbase superuser. You can only restore on a live HBase
cluster because the data must be redistributed to complete the restore operation
successfully.

hbase restore {[-set backup_set_name] | [backup_root_path] | [backupId] |
[tables]} [[table_mapping] | [-overwrite] | [-check]]

5.4.3.4.1. Required Command-Line Arguments

-set backup_set_name The -set option here directs the utility to restore the backup
set that you specify in backup_set_name argument.

backup_root_path The backup_root_path argument specifies the parent
location of the stored backup image.

backupId The backup ID that uniquely identifies the backup image to
be restored.

tables Table or tables to restore. The values for this argument must
be entered directly after the backupId argument. Specify
tables in a comma-separated list.

5.4.3.4.2. Optional Command-Line Arguments

table_mapping Directs the utility to restore data in the tables that are specified in
the tables option. Each table must be mapped prior to running the
command. Enter tables as a comma-separated list.

-overwrite Truncates one or more tables in the target restore location and loads
data from the backup image. The existing table must be online before

Hortonworks Data Platform August 31, 2017

94

the hbase restore command is run to successfully overwrite the data
in the table. Compaction is not required for the data restore operation
when you use the -overwrite argument.

-check Verifies that the restore sequence and dependencies are in working
order without actually executing a data restore.

5.4.3.4.3. Example of Usage

hbase restore /tmp/backup_incremental backupId_1467823988425 mytable1,mytable2 -
overwrite

This command restores two tables of an incremental backup image. In this example:

• /tmp/backup_incremental is the path to the directory containing the backup image.

• backupId_1467823988425 is the backup ID.

• mytable1 and mytable2 are the names of the tables in the backup image to be
restored.

• -overwrite is an argument that indicates the restored tables overwrite all existing
data in the versions of mytable1 and mytable2 that exist in the target destination of the
restore operation.

5.4.3.5. Administering and Deleting Backup Images

The hbase backup command has several subcommands that help with administering
backup images as they accumulate. Most production environments require recurring
backups, so it is necessary to have utilities to help manage the data of the backup
repository. Some subcommands enable you to find information that can help identify
backups that are relevant in a search for particular data. You can also delete backup
images.

The following list details each hbase backup subcommand that can help administer
backups. Run the full command-subcommand line as hbase superuser.

hbase backup history [-n
number_of_backups]

Displays a log of backup sessions. The information
for each session includes backup ID, type (full or
incremental), the tables in the backup, status, and start
and end time.

Specify the number of backup sessions to display with
the optional -n argument. If no number is specified, the
command displays a log of 10 backup sessions.

hbase backup describe
{backupId}

Lists the backup image content, time when the backup
was taken, whether the backup is full or incremental, all
tables in the backup, and backup status. The backupId
option is required.

hbase backup delete {backupId} Deletes the specified backup image from the system.
The backup_ID option is required.

Hortonworks Data Platform August 31, 2017

95

5.4.3.6. Technical Details of Incremental Backup-and-Restore

HBase incremental backups enable more efficient capture of HBase table images than
previous attempts at serial backup-and-restore solutions, such as those that only used
HBase Export and Import APIs. Incremental backups use Write Ahead Logs (WALs) to
capture the data changes since the previous backup was created. A roll log is executed
across all RegionServers to track the WALs that need to be in the backup.

After the incremental backup image is created, the source backup files usually are on same
node as the data source. A process similar to the DistCp (distributed copy) tool is used to
move the source backup files to the target filesystems. When a table restore operation
starts, a two-step process is initiated. First, the full backup is restored from the full backup
image. Second, all WAL files from incremental backups between the last full backup and
the incremental backup being restored are converted to HFiles, which the HBase Bulk Load
utility automatically imports as restored data in the table.

You can only restore on a live HBase cluster because the data must be redistributed to
complete the restore operation successfully.

5.4.3.7. Scenario: Safeguarding Application Datasets on Amazon S3

This scenario describes how a hypothetical retail business uses backups to safeguard
application data and then restore the dataset after failure.

The HBase administration team uses backup sets to store data from a group of tables that
have interrelated information for an application called green. In this example, one table
contains transaction records and the other contains customer details. The two tables need
to be backed up and be recoverable as a group.

The admin team also wants to ensure daily backups occur automatically.

Figure 5.7. Tables Composing the Backup Set

Hortonworks Data Platform August 31, 2017

96

The following is an outline of the steps and examples of commands that are used to
backup the data for the green application and to recover the data later. All commands are
run when logged in as hbase superuser.

1. A backup set called green_set is created as an alias for both the transactions table and
the customer table. The backup set can be used for all operations to avoid typing each
table name. The backup set name is case-sensitive and should be formed with only
printable characters and without spaces.

$ hbase backup set add green_set transactions
$ hbase backup set add green_set customer

2. The first backup of green_set data must be a full backup. The following command
example shows how credentials are passed to Amazon S3 and specifies the file system
with the s3a: prefix.

$ ACCESS_KEY=ABCDEFGHIJKLMNOPQRST
$ SECRET_KEY=0123456789abcdefghijklmnopqrstuvwxyzABCD
$ sudo -u hbase hbase backup create full \
 s3a://$ACCESS_KEY:$SECRET_KEY@prodhbasebackups/backups -set green_set

3. Incremental backups should be run according to a schedule that ensures essential data
recovery in the event of a catastrophe. At this retail company, the HBase admin team
decides that automated daily backups secures the data sufficiently. The team decides
that they can implement this by modifying an existing Cron job that is defined in /
etc/crontab. Consequently, IT modifies the Cron job by adding the following line:

@daily hbase /path/to/hbase/bin/hbase backup create incremental
s3a://$ACCESS_KEY:$SECRET_KEY@prodhbasebackups/backups -set green_set

4. A catastrophic IT incident disables the production cluster that the green application
uses. An HBase system administrator of the backup cluster must restore the green_set
dataset to the point in time closest to the recovery objective.

Note

If the administrator of the backup HBase cluster has the backup ID with
relevant details in accessible records, the following search with the hadoop
fs -ls command and manually scanning the backup ID list can be bypassed.
Consider continuously maintaining and protecting a detailed log of backup
IDs outside the production cluster in your environment.

The HBase administrator runs the following command on the directory where backups
are stored to print a list of successful backup IDs on the console:

hadoop fs -ls -t /prodhbasebackups/backups

5. The admin scans the list to see which backup was created at a date and time closest to
the recovery objective. To do this, the admin converts the calendar timestamp of the
recovery point in time to Unix time because backup IDs are uniquely identified with

Hortonworks Data Platform August 31, 2017

97

Unix time. The backup IDs are listed in reverse chronological order, meaning the most
recent successful backup appears first.

The admin notices that the following line in the command output corresponds with
the green_set backup that needs to be restored:

/prodhbasebackups/backups/backupId_1467823988425

6. The admin restores green_set invoking the backup ID and the -overwrite option.
The -overwrite option truncates all existing data in the destination and populates
the tables with data from the backup dataset. Without this flag, the backup data is
appended to the existing data in the destination. In this case, the admin decides to
overwrite the data because it is corrupted.

$ sudo -u hbase hbase restore -set green_set \
 s3a://$ACCESS_KEY:$SECRET_KEY@prodhbasebackups/backups
 backupId_1467823988425 \ -overwrite

5.5. Medium Object (MOB) Storage Support in
Apache HBase

An HBase table becomes less efficient once any cell in the table exceeds 100 KB of data.
Objects exceeding 100 KB are common when you store images and large documents, such
as email attachments, in HBase tables. But you can configure Hortonworks Data Platform
(HDP) HBase to support tables with cells that have medium-size objects, also known as
medium objects or more commonly as MOBs, to minimize the performance impact that
objects over 100 KB can cause. MOB support operates by storing a reference of the object
data within the main table. The reference in the table points toward external HFiles that
contain the actual data, which can be on disk or in HDFS.

To enable MOB storage support for a table column family, you can choose one of two
methods. One way is to run the table create command or the table alter command with
MOB options in the HBase shell. Alternatively, you can set MOB parameters in a Java API.

5.5.1. Enabling MOB Storage Support

You can enable MOB storage support and configure the MOB threshold by using one of
two different methods. If you do not specify a MOB size threshold, the default value of 100
KB is used.

Tip

While HBase enforces no maximum-size limit for a MOB column, generally the
best practice for optimal performance is to limit the data size of each cell to 10
MB.

Prerequisites:

• hbase superuser privileges

• HFile version 3, which is the default format of HBase 0.98+.

Hortonworks Data Platform August 31, 2017

98

Method 1: Configure options in the command line

Run the table create command or the table alter command and do the following:

• Set the IS_MOB option to true.

• Set the MOB_THRESHOLD option to the number of bytes for the threshold size above
which an object is treated as a medium-size object.

Following are a couple of HBase shell command examples:

hbase> create 't1', {IMAGE_DATA => 'f1', IS_MOB => true, MOB_THRESHOLD =>
 102400}

hbase> alter 't1', {IMAGE_DATA => 'f1', IS_MOB => true, MOB_THRESHOLD =>
 102400}

Method 2: Invoke MOB support parameters in a Java API

You can use the following parameters in a Java API to enable and configure MOB storage
support. The second parameter (hcd.setMobThreshold) is optional.

If you invoke the MOB threshold parameter, substitute bytes with the value for the
number of bytes for the threshold size at which an object is treated as a medium-size
object. If you omit the parameter when you enable MOB storage, the threshold value
defaults to 102400 (100 KB).

• hcd.setMobEnabled(true);

• hcd.setMobThreshold(bytes);

Following is a Java API example:

HColumnDescriptor hcd = new HColumnDescriptor(“f”);
hcd.setMobEnabled(true);
hcd.setMobThreshold(102400L);

5.5.2. Testing the MOB Storage Support Configuration

Run the org.apache.hadoop.hbase.IntegrationTestIngestWithMOB utility to test the MOB
storage configuration. Values in the command options are expressed in bytes.

Following is an example that uses default values (in bytes):

$ sudo -u hbase hbase org.apache.hadoop.hbase.IntegrationTestIngestWithMOB \
-threshold 1024 \
-minMobDataSize 512 \
-maxMobDataSize threshold * 5 \

5.5.3. Tuning MOB Storage Cache Properties

Opening a MOB file places corresponding HFile-formatted data in active memory. Too
many open MOB files can cause a RegionServer to exceed the memory capacity and

Hortonworks Data Platform August 31, 2017

99

cause performance degradation. To minimize the possibility of this issue arising on a
RegionServer, you might need to tune the MOB file reader cache to an appropriate size so
that HBase scales appropriately.

The MOB file reader cache is a least recently used (LRU) cache that keeps only the most
recently used MOB files open. Refer to the MOB Cache Properties table for variables
that can be tuned in the cache. MOB file reader cache configuration is specific to each
RegionServer, so assess and change, if needed, each RegionServer individually. You can use
either one of the two following methods.

Method 1: Enter property settings using Ambari

1. In Ambari select Advanced tab > Custom HBase-Site > Add Property.

2. Enter a MOB cache property in the Type field.

3. Complete the Value field with your configuration setting.

Method 2: Enter property settings directly in the hbase-site.xml file

1. Open the RegionServer’s hbase-site.xml file. The file is usually located under /etc/
hbase/conf .

2. Add the MOB cache properties to the RegionServer’s hbase-site.xml file.

3. Adjust the parameters or use the default settings.

4. Initiate a restart or rolling restart of the RegionServer. For more information about
rolling restarts, see the Rolling Restart section of the online Apache HBase Reference
Guide.

Table 5.2. MOB Cache Properties

Property and Default Value Description

hbase.mob.file.cache.size

Default Value: 1000

Number of opened file handlers to cache. A larger value
enhances read operations by providing more file handlers
per MOB file cache and reduce frequent file opening and
closing. However, if the value is set too high, a "too many
opened file handers" condition can occur.

hbase.mob.cache.evict.period

Default Value: 3600

The amount of time (in seconds) after which an unused
file is evicted from the MOB cache.

hbase.mob.cache.evict.remain.ratio

Default Value: 0.5f

A multiplier (between 0.0 and 1.0) that determines
how many files remain cached after the
hbase.mob.file.cache.size property threshold is reached.
The default value is 0.5f, which indicates that half the files
(the least-recently used ones) are evicted.

5.6. HBase Quota Management
Important

The HBase storage quota feature of HDP is a technical preview and considered
under development. Do not use this feature in your production systems. If you

https://hbase.apache.org/book.html#rolling

Hortonworks Data Platform August 31, 2017

100

have questions regarding this feature, contact Support by logging a case on the
Hortonworks Support Portal.

In a multitenant HBase environment, ensuring that each tenant can use only its allotted
portion of the system is key in meeting SLAs. Two types of HBase quotas are well
established: throttle quota and number-of tables-quota. These two quotas can regulate
users and tables.

As of version 2.6, HDP has an additional quota type: a filesystem space quota. You can use
file-system quotas to regulate the usage of filesystem space on namespaces or at the table
level.

Table 5.3. Quota Support Matrix

Quota Type Resource Type Purpose Namespace
applicable?

Table
applicable?

User
applicable?

Throttle Network Limit overall network throughput
and number of RPC requests

Yes Yes Yes

New space Storage Limit amount of storage used for
table or namespaces

Yes Yes No

Number of tables Metadata Limit number of tables for each
namespace or user

Yes No Yes

Numbr of regions Metadata Limit number of regions for each
namespace

Yes No No

5.6.1. Setting Up Quotas

Prerequisite

hbase superuser privileges

About this Task

HBase quotas are disabled by default. To enable quotas, the relevant hbase-site.xml
property must be set to true and the limit of each quota specified on the command line.

Steps

1. Set the hbase.quota.enabled property in the hbase-site.xml file to true.

2. Enter the command to set the set the limit of the quota, type of quota, and to which
entity to apply the quota. The command and its syntax are:

$hbase_shell> set_quota TYPE => {quota_type,arguments}

General Quota Syntax

THROTTLE_TYPE Can be expressed as READ-only, WRITE-only, or the
default type (both READ and WRITE permissions)

Timeframes Can be expressed in the following units of time:

• sec (second)

min (minute)

https://support.hortonworks.com

Hortonworks Data Platform August 31, 2017

101

hour

day

Request sizes and space limit Can be expressed in the following units:

• B: bytes

K: kilobytes

M: megabytes

G: gigabytes

P: petabytes

When no size units is included, the default value is
bytes.

Number of requests Expressed as integer followed by the string request

Time limits Expressed as requests per unit-of-time or size per unit-
of-time

Examples: 10req/day or 100P/hour

Number of tables or regions Expressed as integers

5.6.2. Throttle Quotas

The throttle quota, also known as RPC limit quota, is commonly used to manage length
of RPC queue as well as network bandwidth utilization. It is best used to prioritize time-
sensitive applications to ensure latency SLAs are met.

Examples of Adding Throttle Quotas Commands

Limit user u1 to 10 requests per second globally:

hbase> set_quota => TYPE => THROTTLE, USER => 'u1', LIMIT => '10req/sec'

Limit user u1 to up to 10MB of traffic per second globally:

hbase> set_quota => TYPE => THROTTLE, USER => 'u1', LIMIT => '10M/sec'

Limit user u1 to 10 requests/second globally for read operations. User u1 can still issue
unlimited writes:

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => READ, USER => 'u1', LIMIT
 => '10req/sec'

Limit user u1 to 10 requests/second globally for read operations. User u1 can still issue
unlimited reads:

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, USER => 'u1', LIMIT
 => '10M/sec'

Hortonworks Data Platform August 31, 2017

102

Limit user u1 to 5 KB/second for all operations on table t2. User u1 can still issue unlimited
requests for other tables, regardless of type of operation:

hbase> set_quota TYPE => THROTTLE, USER => 'u1', TABLE => 't2', LIMIT => '5K/
min'

Limit request to namespaces:

hbase> set_quota TYPE => THROTTLE, NAMESPACE => 'ns1', LIMIT => '10req/sec'

Limit request to tables:

hbase> set_quota TYPE => THROTTLE, TABLE => 't1', LIMIT => '10M/sec'

Limit requests based on type, regardless of users, namespaces, or tables:

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, TABLE => 't1',
 LIMIT => '10M/sec'

Examples of Listing Throttle Quotas Commands

Show all quotas:

hbase> list_quotas

Show all quotas applied to user bob:

hbase> list_quotas USER => 'bob.*'

Show all quotas applied to user bob and filter by table or namespace:

hbase> list_quotas USER => 'bob.*', TABLE => 't1'
hbase> list_quotas USER => 'bob.*', NAMESPACE => 'ns.*'

Show all quotas and filter by table or namespace:

hbase> list_quotas TABLE => 'myTable'
hbase> list_quotas NAMESPACE => 'ns.*'

Examples of Updating and Deleting Throttle Quotas Commands

To update a quota, simply issue a new set_quota command. To remove a quota, you can
set LIMIT to NONE. The actual quota entry will not be removed, but the policy will be
disabled.

hbase> set_quota TYPE => THROTTLE, USER => 'u1', LIMIT => NONE

hbase> set_quota TYPE => THROTTLE, USER => 'u1', NAMESPACE => 'ns2', LIMIT =>
 NONE

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, USER => 'u1', LIMIT
 => NONE

hbase> set_quota USER => 'u1', GLOBAL_BYPASS => true

5.6.3. Space Quotas
Space quotas, also known as filesystem space quotas, limit the amount of stored data. It
can be applied at a table or namespace level where table-level quotas take priority over
namespace-level quotas.

Hortonworks Data Platform August 31, 2017

103

Space quotas are special in that they can trigger different policies when storage goes above
thresholds. The following list describes the policies, and they are listed in order of least strict
to most strict:

NO_INSERTS Prohibits new data from being ingested (for example,
data from Put, Increment, and Append operations are not
ingested).

NO_WRITES Performs the same function as NO_INSERTS but Delete
operations are also prohibited.

NO_WRITES_COMPACTIONS Performs the same function as NO_INSERTS but
compactions are also prohibited.

DISABLE Diables tables.

Examples of Adding Space Quotas

Add quota with the condition that Insert operations are rejected when table t1 reaches 1
GB of data:

hbase> set_quota TYPE => SPACE, TABLE => 't1', LIMIT => '1G', POLICY =>
 NO_INSERTS

Add quota with the condition that table t2 is disabled when 50 GB of data is exceeded:

hbase> set_quota TYPE => SPACE, TABLE => 't2', LIMIT => '50G', POLICY =>
 DISABLE

Add quota with the condition that Insert and Delete operations cannot be applied to
namespace ns1 when it reaches 50 terabytes of data:

hbase> set_quota TYPE => SPACE, NAMESPACE => 'ns1', LIMIT => '50T', POLICY =>
 NO_WRITES

Listing Space Quotas

See "Examples of Listing Throttle Quotas Commands" above for the supported syntax.

Examples of Updating and Deleting Space Quotas

A quota can be removed by setting LIMIT to NONE.

hbase> set_quota TYPE => SPACE, TABLE => 't1', LIMIT => NONE

hbase> set_quota TYPE => SPACE, NAMESPACE => 'ns1', LIMIT => NONE

5.6.4. Quota Enforcement

When a quota limit is exceeded, the Master server instructs RegionServers to enable an
enforcement policy for the namespace or table that violated the quota. It is important to
note the storage quota is not reported in real-time. There is a window when threshold
is reached on RegionServers but the threshold accounted for on the Master server is not
updated.

Hortonworks Data Platform August 31, 2017

104

Important

Set a storage limit lower than the amount of available disk space to provide
extra buffer.

5.6.5. Quota Violation Policies

If quotas are set for the amount of space each HBase tenant can fill on HDFS, then a
coherent quota violation policy should be planned and implemented on the system.

When a quota violation policy is enabled, the table owner should not be allowed to remove
the policy. The expectation is that the Master automatically removes the policy. However,
the HBase superuser should still have permission.

Automatic removal of the quota violation policy after the violation is resolved can be
accomplished via the same mechanisms that it was originally enforced. But the system
should not immediately disable the violation policy when the violation is resolved.

The following describes quota violation policies that you might consider.

Disabling Tables

This is the “brute-force” policy, disabling any tables that violated the quota. This policy
removes the risk that tables over quota affect your system. For most users, this is likely not
a good choice as most sites want READ operations to still succeed.

One hypothetical situation when a disabling tables policy might be advisable is when there
are multiple active clusters hosting the same data and, because of a quota violation, it
is discovered that one copy of the data does not have all of the data it should have. By
disabling tables, you can prevent further discrepancies until the administrator can correct
the problem.

Rejecting All WRITE Operations, Bulk Imports, and Compactions

This policy rejects all WRITEs and bulk imports to the region which the quota applies.
Compactions for this region are also disabled to prevent the system from using more space
because of the temporary space demand of a compaction. The only resolution in this case is
administrator intervention to increase the quota that is being exceeded.

Rejecting All WRITE Operations and Bulk Imports

This is the same as the previous policy, except that compactions are still allowed. This allows
users to set or alter a TTL on table and then perform a compaction to reduce the total used
space. Inherently, using this violation policy means that you let used space to slightly rise
before it is ultimately reduced.

Allowing DELETE Operations But Rejecting WRITE Operations and Bulk Imports

This is another variation of the two previously listed policies. This policy allows users to run
processes to delete data in the system. Like the previous policy, using this violation policy
means that you let used space slightly rises before it is ultimately reduced. In this case, the
deletions are propagated to disk and a compaction actually removes data previously stored
on disk. TTL configuration and compactions can also be used to remove data.

Hortonworks Data Platform August 31, 2017

105

5.6.6. Impact of Quota Violation Policy

“Live” Write Access

As one would expect, every violation policy outlined disables the ability to write new
data into the system. This means that any Mutation implementation other than DELETE
operations could be rejected by the system. Depending on the violation policy, DELETE
operations still might be accepted.

“Bulk” Write Access

Bulk loading HFiles can be an extremely effective way to increase the overall throughput
of ingest into HBase. Quota management is very relevant because large HFiles have the
potential to quickly violate a quota. Clients group HFiles by region boundaries and send
the file for each column family to the RegionServer presently hosting that region. The
RegionServer ultimately inspects each file, ensuring that it should be loaded into this
region, and then, sequentially, load each file into the correct column family.

As a part of the precondition-check of the file’s boundaries before loading it, the quota
state should be inspected to determine if loading the next file will violate the quota. If the
RegionServer determines that it will violate the quota, it should not load the file and inform
the client that the file was not loaded because it would violate the quota.

Read Access

In most cases, quota violation policies can affect the ability to read the data stored in
HBase. A goal of applying these HBase quotas is to ensure that HDFS remains healthy and
sustains a higher level of availability to HBase users. Guaranteeing that there is always
free space in HDFS can yield a higher level of health of the physical machines and the
DataNodes. This leaves the HDFS-reserved space percentage as a fail-safe mechanism.

Metrics and Insight

Quotas should ideally be listed on the HBase Master UI. The list of defined quotas should be
present as well as those quotas whose violation policy is being enforced. The list of tables/
namespaces with enforced violation policies should also be presented via the JMX metrics
exposed by the Master.

Overlapping Quota Policies

With the ability to define a quota policy on namespaces and tables, you have to define how
the policies are applied. A table quota should take precedence over a namespace quota.

For example, consider Scenario 1, which is outlined in the following table. Namespace n has
the following collection of tables: n1.t1, n1.t2, and n1.t3. The namespace quota is 100 GB.
Because the total storage required for all tables is less than 100 GB, each table can accept
new WRITEs.

Table 5.4. Scenario 1: Overlapping Quota Policies

Object Quota Storage Utilization

Namespace n1 100 GB 80 GB

Table n1.t1 10 GB 5 GB

Hortonworks Data Platform August 31, 2017

106

Object Quota Storage Utilization

Table n1.t2 (not set) 50 GB

Table n1.t3 (not set) 25 GB

In Scenario 2, as shown in the following table, WRITEs to table n1.t1 are denied because
the table quota is violated, but WRITEs to tablen1.t2 and table n1.t3 are still allowed
because they are within the namespace quota. The violation policy for the table quota on
table n1.t1 is enacted.

Table 5.5. Scenario 2: Overlapping Quota Policies

Object Quota Storage Utilization

Namespace n1 100 GB 60 GB

Table n1.t1 10 GB 15 GB

Table n1.t2 (not set) 30 GB

Table n1.t3 (not set) 15 GB

In the Scenario 3 table below, WRITEs to all tables are not allowed because the storage
utilization of all tables exceeds the namespace quota limit. The namespace quota violation
policy is applied to all tables in the namespace.

Table 5.6. Scenario 3: Overlapping Quota Policies

Object Quota Storage Utilization

Namespace n1 100 GB 108 GB

Table n1.t1 10 GB 8 GB

Table n1.t2 (not set) 50 GB

Table n1.t3 (not set) 50 GB

In the Scenario 4 table below, table n1.t1 violates the quota set at the table level. The table
quota violation policy is enforced. In addition, the disk utilization of table n1t1 plus the
sum of disk utilization for table n1t2 and table n1t3exceeds the 100 GB namespace quota.
Therefore, the namespace quota violation policy is also applied.

Table 5.7. Scenario 4: Overlapping Quota Policies

Object Quota Storage Utilization

Namespace n1 100 GB 115 GB

Table n1.t1 10 GB 15 GB

Table n1.t2 (not set) 50 GB

Table n1.t3 (not set) 50 GB

5.6.7. Number-of-Tables Quotas
The number-of-tables quota is set as part of the namespace metadata and does not involve
the set_quota command.

Examples of Commands Relevant to Setting and Administering Number-of-Tables Quotas

Create namespace ns1 with a maximum of 5 tables

hbase> create_namespace 'ns1', {'hbase.namespace.quota.maxtables'=>'5'}

Hortonworks Data Platform August 31, 2017

107

Alter an existing namespace ns1 to set a maximum of 8 tables

hbase> alter_namespace 'ns1', {METHOD => 'set', 'hbase.namespace.quota.
maxtables'=>'8'}

Show quota information for namespace ns1

hbase> describe_namespace 'ns1'

Alter existing namespace ns1 to remove a quota

hbase> alter_namespace 'ns1', {METHOD => 'unset', NAME=>'hbase.namespace.
quota.maxtables'}

5.6.8. Number-of-Regions Quotas

The number-of-regions quota is similar to the number-of-tables quota. The number-
of-regions quota is set as part of the namespace metadata and does not involve the
set_quota command.

Examples of Commands Relevant to Setting and Administering Number-of-Regions
Quotas

Create namespace ns1 with a maximum of 5 tables

hbase> create_namespace 'ns1', {'hbase.namespace.quota.maxregions'=>'5'}

Alter an existing namespace ns1 to set a maximum of 8 regions

hbase> alter_namespace 'ns1', {METHOD => 'set', 'hbase.namespace.quota.
maxregions'=>'8'}

Show quota information for namespace ns1

hbase> describe_namespace 'ns1'

Alter existing namespace ns1 to remove a quota

hbase> alter_namespace 'ns1', {METHOD => 'unset', NAME=>'hbase.namespace.
quota.maxregions'}

Hortonworks Data Platform August 31, 2017

108

6. Orchestrating SQL and APIs with
Apache Phoenix

Apache Phoenix is a SQL abstraction layer for interacting with Apache HBase and other
Hadoop components. Phoenix lets you create and interact with tables in the form of typical
DDL/DML statements via its standard JDBC API. With the driver APIs, Phoenix translates
SQL to native HBase API calls. Consequently, Phoenix provides a SQL skin for working with
data and objects stored in the NoSQL schema of HBase.

This Phoenix documentation focuses on interoperability with HBase. For more information
about Phoenix capabilities, see the Apache Phoenix website.

6.1. Enabling Phoenix and Interdependent
Components

If you have a Hortonworks Data Platform installation with Ambari, then no separate
installation is required for Phoenix.

To enable Phoenix with Ambari:

1. Open Ambari.

2. Select Services tab > HBase > Configs tab.

3. Scroll down to the Phoenix SQL settings.

4. (Optional) Reset the Phoenix Query Timeout.

5. Click the Enable Phoenix slider button.

If you installed Hortonworks Data Platform manually and did not include the Phoenix
component, see Installing Apache Phoenix.

Important

Your Phoenix installation must be the same version as the one that is packaged
with the distribution of the HDP stack version that is deployed across your
cluster.

6.2. Thin Client Connectivity with Phoenix Query
Server

The Phoenix Query Server (PQS) is a component of the Apache Phoenix distribution.
PQS provides an alternative means to connect directly. PQS is a stand-alone server that
converts custom API calls from "thin clients" to HTTP requests that make use of Phoenix
capabilities. This topology offloads most computation to PQS and requires a smaller client-

http://phoenix.apache.org
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-installation/content/ch_install_phoenix_chapter.html

Hortonworks Data Platform August 31, 2017

109

side footprint. The PQS client protocol is based on the Avatica component of Apache
Calcite.

6.2.1. Securing Authentication on the Phoenix Query Server

You can enable Kerberos-based authentication on PQS with Ambari. If you chose to install
HDP manually instead, see Configuring Phoenix Query Server to enable the Kerberos
protocol.

6.3. Selecting and Obtaining a Client Driver
You have two options to develop an application that works with Phoenix, depending on
the client-server architecture:

Without Phoenix Query Server: If your environment does not have a PQS layer,
applications that connnect to Phoenix must use the Phoenix JDBC client driver.

With Phoenix Query Server: PQS is an abstraction layer that enables other languages such
as Python and GoLang to work with Phoenix. The layer provides a protocol buffer as an
HTTP wrapper around Phoenix JDBC. You might prefer to use a non-Java client driver for
one of various reasons, such as to avoid the JVM footprint on the client or to develop with
a different application framework.

To obtain the appropriate driver for application development:

JDBC Driver Use the /usr/hdp/current/phoenix-client/
phoenix-client.jar file in the Hortonworks
Phoenix server-client repository . If you use the
repository, download the JAR file corresponding to your
installed HDP version. With Ambari, you can determine
the HDP version by using the Versions tab. Alternatively,
run the hadoop version command to print information
displaying the HDP version.

JDBC Driver as a Maven
dependency

See Download the HDP Maven Artifacts for Maven
artifact repositories that are available for HDP.

Microsoft .NET Driver Download and install a NuGet package for the
Microsoft .NET Driver for Apache Phoenix and Phoenix
Query Server. Note: Operability with this driver is
a Hortonworks Technical Preview and considered
under development. Do not use this feature in your
production systems. If you have questions regarding
this feature, contact Support by logging a case on the
Hortonworks Support Portal.

Other non-Java drivers Other non-JDBC Drivers for Phoenix are available as HDP
add-ons and on other websites, but they are not currently
supported by Hortonworks. You can find compatible client
drivers by constructing a web search string consisting of
"avatica" and the name of an application programming

http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_security/content/kerb-config-secure-phoenix.html
http://repo.hortonworks.com/content/repositories/releases/org/apache/phoenix/phoenix-server-client/
http://repo.hortonworks.com/content/repositories/releases/org/apache/phoenix/phoenix-server-client/
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/managing_stack_and_versions.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_command-line-installation/content/download_hdp_maven_artifacts.html
https://www.nuget.org/packages/Microsoft.Phoenix.Client/
https://www.nuget.org/packages/Microsoft.Phoenix.Client/
https://www.nuget.org/packages/Microsoft.Phoenix.Client/
https://support.hortonworks.com

Hortonworks Data Platform August 31, 2017

110

language that you want to use. Example: avatica
python .

6.4. Creating and Using User-Defined Functions
(UDFs) in Phoenix

With a user-defined function (UDF), you can extend the functionality of your SQL
statements by creating scalar functions that operate on a specific tenant. For details about
creating, dropping, and how to use UDFs for Phoenix, see User-defined functions on the
Apache website.

6.5. Mapping Phoenix Schemas to HBase
Namespaces

You can map a Phoenix schema to an HBase namespace to gain multitenancy features in
Phoenix.

HBase, which is often the underlying storage engine for Phoenix, has namespaces to
support multitenancy features. Multitenancy helps an HBase user or administrator perform
access control and quota management tasks. Also, namespaces enable tighter control of
where a particular data set is stored on RegionsServers. See Enabling Multitenancy with
Namepaces for further information.

Prior to HDP 2.5, Phoenix tables could not be associated with a namespace other than the
default namespace.

6.5.1. Enabling Namespace Mapping

Important

After you set the properties to enable the mapping of Phoenix schemas
to HBase namespaces, reverting the property settings renders the Phoenix
database unusable. Test or carefully plan the Phoenix to HBase namespace
mappings before implementing them.

To enable Phoenix schema mapping to a non-default HBase namespace:

1. Set the phoenix.schema.isNamespaceMappingEnabled property to true in the
hbase-site.xml file of both the client and the server.

2. Restart the HBase Master and RegionServer processes.

Note

You might not want to map Phoenix system tables to namespaces because
there are compatibility issues with your current applications. In this case, set

https://phoenix.apache.org/udf.html
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/deploying_hbase.html#hbase-namespaces
http://private-repo-1.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.2/bk_data-access/content/deploying_hbase.html#hbase-namespaces

Hortonworks Data Platform August 31, 2017

111

the phoenix.schema.mapSystemTablesToNamespace property of the hbase-
site.xml file to false.

Namespace Mapping Properties in the hbase-site.xml File

phoenix.schema.isNamespaceMappingEnabled
Enables mapping of tables of a Phoenix schema to a
non-default HBase namespace. To enable mapping of
schema to a non-default namespace, set the value of
this property to true. Default setting for this property
is false.

phoenix.schema.mapSystemTablesToNamespace
With true setting (default): After namespace mapping
is enabled with the other property, all system tables, if
any, are migrated to a namespace called system.

With false setting: System tables are associated with
the default namespace.

6.5.2. Creating New Schemas and Tables with Namespace
Mapping

You can use the following DDL statements for managing schemas:

• CREATE SCHEMA

• USE SCHEMA

• DROP SCHEMA

You must have admin privileges in HBase to run CREATE SCHEMA or DROP SCHEMA.

See the Apache Phoenix Grammar reference page for how you can use these DDL
statements.

As you create physical tables, views, and indexes, you can associate them with a schema.
If the schema already has namespace mapping enabled, the newly created objects
automatically become part of the HBase namespace. The directory of the HBase namespace
that maps to the Phoenix schema inherits the schema name. For example, if the schema
name is store1, then the full path to the namespace is $hbase.rootdir/data/
store1. See the "F.A.Q." section of Apache Phoenix Namespace Mapping for more
information.

6.5.3. Associating Tables of a Schema to a Namespace
After you enable namespace mapping on a Phoenix schema that already has tables, you
can migrate the tables to an HBase namespace. The namespace directory that contains the
migrated tables inherits the schema name. For example, if the schema name is store1,
then the full path to the namespace is $hbase.rootdir/data/store1.

System tables are migrated to the namespace automatically during the first connection
after enabling namespace properties.

https://phoenix.apache.org/language/index.html
https://phoenix.apache.org/namspace_mapping.html

Hortonworks Data Platform August 31, 2017

112

6.5.3.1. Associating in a Noncustomized Environment without Kerberos

Run the following command to associate a table:

$bin/psql.py {ZooKeeper_hostname -m schema_name.table_name}

6.5.3.2. Associating in a Customized Kerberos Environment

Prerequisite: In a Kerberos-secured environment, you must have admin privileges (user
hbase) to complete the following task.

1. Navigate to the Phoenix home directory. The default location is /usr/hdp/
current/phoenix-client/.

2. Run a command to migrate a table of a schema to a namespace, using the following
command syntax for the options that apply to your environment:

$ bin/psql.py {{ZooKeeper_hostnames:2181} |
[:zookeeper.znode.parent] | [:HBase_headless_keytab_location] |
[:principal_name] | [;TenantId=tenant_Id] | [;CurrentSCN=current_SCN]} -m
{schema_name.table_name}

Additional information for valid command parameters:

ZooKeeper_hostnames Enter the ZooKeeper hostname or hostnames that
compose the ZooKeeper quorum. If you enter multiple
hostnames, enter them as comma-separated values. This
parameter is required. You must append the colon and
ZooKeeper port number if you invoke the other security
parameters in the command. The default port number is
2181.

zookeeper.znode.parent This setting is defined in the hbase-site.xml file.

-m
schema_name.table_name

The -m argument is required. There is a space before
and after the -m option.

6.6. Phoenix Repair Tool

Important

The Phoenix repair tool of HDP is a technical preview and considered under
development. Do not use this feature in your production systems. If you have
questions regarding this feature, contact Support by logging a case on the
Hortonworks Support Portal.

Apache Phoenix depends on the SYSTEM.CATALOG table for metadata information,
such as table structure and index location, to function correctly. Use the Phoenix repair
tool to validate the data integrity of the SYSTEM.CATALOG table. If a Phoenix client is
not functioning as expected and throwing exceptions such as ArrayIndexOutOfBound or
TableNotFound, this tool can help identify the problem and fix it.

https://support.hortonworks.com

Hortonworks Data Platform August 31, 2017

113

The repair tool is designed to flag issues that are flagrant trouble spots and to fix
SYSTEM.CATALOG problems in a way that does not radically affect your Phoenix system.
The tool prompts you to confirm changes before the SYSTEM.CATALOG table is modified.

Do not use the Phoenix repair tool for an upgrade. The tool is designed to function ony
with the current version of the system catalog and to use the HBase API directly.

6.6.1. Running the Phoenix Repair Tool

Tip

Run the HDFS fsck and HBase hbck tools before running the Phoenix repair
tool. Checking the condition of HDFS and HBase is highly recommended
because the Phoenix repair tool does not run on HDFS and HBase, both of
which must be in working order for the repair tool to fix Phoenix problems.

About this Task

• The Phoenix repair tool looks for table records in the system catalog and collects all
corresponding information about columns and indexes. If certain inconsistencies are
detected, then the tool prompts you to verify that it should proceed with fixing the
problems. The tool can fix the following problems:

• Missing or disabled physical table

• Incorrect number of columns in table metadata information

• Table record has columns with an internal index that is out of range

• The tool performs a cross-reference check between user tables and indexes. If a user
table has an index that misses a physical table, the tool offers to delete the link to this
index as well as to delete the index table record from the system catalog. If the physical
table is disabled, the tool asks whether it needs to be enabled.

• If you allow the Phoenix repair tool to fix an issue, the tool creates a snapshot of the
SYSTEM.CATALOG table. The snapshot is created in case you want to rollback the repair
operation.

Prerequisites

Verify that no concurrent execution of the Phoenix repair tool launches or runs while you
run the tool. Also, ensure that no other clients modify the system catalog data while the
tool runs.

Steps

1. Run the psl.py utility with the -r option:

/usr/hdp/current/phoenix-client/psql.py -r

2. If the tool detects previously stored snapshots on the system, respond to the Restore
dialogue prompt:

• Respond whether the tool should delete or retain the previously recorded snapshots.

Hortonworks Data Platform August 31, 2017

114

• Indicate whether the tool should proceed with the integrity check or restore a table
from the one of the snapshots.

Result and Next Step

After the tool completes the check, you can consider the SYSTEM.CATALOG table as
validated. You can proceed with SQL operations in the Phoenix CLI.

Hortonworks Data Platform August 31, 2017

115

7. Real-Time Data Analytics with Druid
Important

The HDP distribution of Druid is a Hortonworks Technical Preview. Do not
use Druid in your production systems. If you have questions about using a
Technical Preview component of HDP, contact Support by logging a case on the
Hortonworks Support Portal.

Druid is an open-source data store designed for online analytical processing (OLAP) queries
on event data. Druid supports the following data analytics features:

• Streaming data ingestion

• Real-time queries

• Scalability to trillions of events and petabytes of data

• Sub-second query latency

These traits make this data store particularly suitable for enterprise-scale business
intelligence (BI) applications in environments that require minimal latency. With Druid you
can have applications running interactive queries that "slice and dice" data in motion.

A common use case for Druid is to provide a data store that can return BI about streaming
data that comes from user activity on a website or multidevice entertainment platform,
from consumer events sent over by a data aggregator, or from any other large-scale set of
relevant transactions or events from Internet-connected sources.

Druid is licensed under the Apache License, version 2.0.

7.1. Content Roadmap
The following table provides links to Druid information resources. The table points to
resources that are not contained in this HDP Data Access Guide.

Important

The hyperlinks in the table and many others throughout this documentation
jump to content published on the druid.io site. Do not download any Druid
code from this site for installation in an HDP cluster. Instead, install by selecting
Druid as a Service in an Ambari-asssisted HDP installation, as described in
Installing and Configuring Druid.

Table 7.1. Druid Content Roadmap in Other Sources

Type of Information Resources Description

Introductions About Druid (Source: druid.io) Introduces the feature highlights of Druid, and
explains in which environments the data store is
best suited. The page also links to comparisons of
Druid against other common data stores.

https://support.hortonworks.com
http://www.apache.org/licenses/LICENSE-2.0
http://druid.io
http://druid.io/druid.html

Hortonworks Data Platform August 31, 2017

116

Type of Information Resources Description

Druid Concepts

(Source: druid.io)

This page is the portal to the druid.io technical
documentation. While the body of this page
describes some of the main technical concepts
and components, the right-side navigation pane
outlines and links to the topics in the druid.io
documentation.

Druid: A Real-time Analytical Data Store

(Source: druid.io)

This white paper describes the Druid architecture
in detail, performance benchmarks, and an
overview of Druid issues in a production
environment. The extensive References section at
the end of the document point to a wide range of
information sources.

Tutorial Druid Quickstart

(Source: druid.io)

A getting started tutorial that walks you through
a Druid package, installation, and loading and
querying data. The installation of this tutorial is
for instructional purposes only and not intended
for use in a Hortonworks Hadoop cluster.

Developing on Druid Developing on Druid

(Source: druid.io)

Provides an overview of major Druid components
to help developers who want to code applications
that use Druid-ingested data. The web page links
to another about segments, which is an essential
entity to understand when writing applications
for Druid.

Data Ingestion Batch Data Ingestion

Loading Streams

(Source: druid.io)

These two pages introduce how Druid can ingest
data from both static files and real-time streams.

Queries of Druid Data Querying

(Source: druid.io)

Describes the method for constructing queries,
supported query types, and query error messages.

Best Practices Recommendations

(Source: druid.io)

A list of tips and FAQs.

7.2. Architecture
Druid offers streaming ingestion and batch ingestion to support both of these data
analytics modes. A Druid cluster consists of several Druid node types and components. Each
Druid node is optimized to serve particular functions. The following list is an overview of
Druid node types:

Realtime nodes ingest and index streaming data that is generated by system events. The
nodes construct segments from the data and store the segments until these segments are
sent to historical nodes. The realtime nodes do not store segments after the segments are
transferred.

Historical nodes are designed to serve queries over immutable, historical data. Historical
nodes download immutable, read-optimized Druid segments from deep storage and use
memory-mapped files to load them into available memory. Each historical node tracks the
segments it has loaded in ZooKeeper and transmits this information to other nodes of the
Druid cluster when needed.

Broker nodes form a gateway between external clients and various historical and realtime
nodes. External clients send queries to broker nodes. The nodes then break each query into
smaller queries based on the location of segments for the queried interval and forwards
them to the appropriate historical or realtime nodes. Broker nodes merge query results

http://druid.io/docs/0.9.2/design/index.html
http://static.druid.io/docs/druid.pdf
http://druid.io/docs/0.9.2/tutorials/quickstart.html
http://druid.io/docs/0.9.2/development/overview.html
http://druid.io/docs/0.9.2/ingestion/batch-ingestion.html
http://druid.io/docs/0.9.2/ingestion/stream-ingestion.html
http://druid.io/docs/0.9.2/querying/querying.html
http://druid.io/docs/0.9.2/operations/recommendations.html

Hortonworks Data Platform August 31, 2017

117

and send them back to the client. These nodes can also be configured to use a local or
distributed cache for caching query results for individual segments.

Coordinator nodes mainly serve to assign segments to historical nodes, handle data
replication, and to ensure that segments are distributed evenly across the historical nodes.
They also provide a UI to manage different data sources and configure rules to load data
and drop data for individual datas sources. The UI can be accessed via Ambari Quick Links.

Middle manager nodes are responsible for running various tasks related to data ingestion,
realtime indexing, segment archives, etc. Each Druid task is run as a separate JVM.

Overlord nodes handle task management. Overlord nodes maintain a task queue that
consists of user-submitted tasks. The queue is processed by assigning tasks in order to the
middle manager nodes, which actually run the tasks. The overlord nodes also support a
UI that provides a view of the current task queue and access to task logs. The UI can be
accessed via Ambari Quick Links for Druid.

Tip

For more detailed information and diagrams about the architecture of Druid,
see Druid: A Real-time Analytical Data Store Design Overview on druid.io.

7.3. Installing and Configuring Druid
Use Apache Ambari to install Druid. Manual installation of Druid to your HDP cluster is not
recommended.

After you have a running Ambari server set up for HDP, you can install and configure Druid
for your Hadoop cluster just like any other Ambari Service.

Important

You must use Ambari 2.5.0 or a later version to install and configure Druid.
Earlier versions of Ambari do not support Druid as a service. Also, Druid is
available as an Ambari Service when you run with the cluster with HDP 2.6.0
and later versions.

If you need to install and start an Ambari server, see the Getting Ready section of the
Apache Ambari Installation Guide.
If a running Ambari server is set up for HDP, see Installing, Configuring, and Deploying a
HDP Cluster and the following subsections. While you can install and configure Druid for
the Hadoop cluster just like any other Ambari Service, the following subsections contain
Druid-specific details for some of the steps in the Ambari-assisted installation.

7.3.1. Interdependencies for the Ambari-Assisted Druid
Installation

To use Druid in a real-world environment, your Druid cluster must also have access to other
resources to make Druid operational in HDP:

• ZooKeeper: A Druid instance requires installation of Apache ZooKeeper. Select
ZooKeeper as a Service during Druid installation. If you do not, the Ambari installer does

http://static.druid.io/docs/druid.pdf
http://druid.io/docs/0.9.2/design/design.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-installation/content/ch_Getting_Ready.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-installation/content/ch_Deploy_and_Configure_a_HDP_Cluster.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-installation/content/ch_Deploy_and_Configure_a_HDP_Cluster.html

Hortonworks Data Platform August 31, 2017

118

not complete. ZooKeeper is used for distributed coordination among Druid nodes and
for leadership elections among coordinator and overlord nodes.

• Deep storage: HDFS or Amazon S3 can be used as the deep storage layer for Druid
in HDP. In Ambari, you can select HDFS as a Service for the deep storage of data.
Aternatively, you can set up Druid to use Amazon S3 as the deep storage layer by
setting the druid.storage.type property to s3. The cluster relies on the distributed
filesystem to store Druid segments so that there is permanent backup of the data.

• Metadata storage: The metadata store is used to persist information about Druid
segments and tasks. MySQL, Postgres, and Derby are supported metadata stores. You
have the opportunity to select the metadata database when you install and configure
Druid with Ambari.

• Batch execution engine: Select YARN + MapReduce2 as the appropriate execution
resource manager and execution engine, respectively. Druid hadoop index tasks use
MapReduce jobs for distributed ingestion of large amounts of data.

• (Optional) Druid metrics reporting: If you plan to monitor Druid performance metrics
using Grafana dashboards in Ambari, select Ambari Metrics System as a Service.

Tip

If you plan to deploy high availability (HA) on a Druid cluster, review the High
Availability in Druid Clusters section below to learn what components to install
and how to configure the installation so that the Druid instance is primed for a
HA environment.

7.3.2. Assigning Slave and Client Components

On the Assign Slaves and Clients window of Ambari, generally you should select Druid
Historical and Druid MiddleManager for multiple nodes. (You may also need to select
other components that are documented in the Apache Ambari Installation Guide.)The
purpose of these components are as follows:

Druid Historical: Loads data segments.
Druid MiddleManager: Runs Druid indexing tasks.

Hortonworks Data Platform August 31, 2017

119

7.3.3. Configuring the Druid Installation

Use the Customize Services window of Ambari installer to finalize the configuration of
Druid.

Select Druid > Metadata storage type to access the drop-down menu for
choosing the metadata storage database. When you click the drop-down
menu, notice the tips about the database types that appear in the GUI.

To proceed with the installation after selecting a database, enter your admin password in
the Metadata storage password fields. If MySQL is your metadata storage database, also
follow the steps in the Setting up MySQL for Druid section below.

Toggle to the Advanced tab. Ambari has Stack Advisor, which is configuration wizard.
Stack Advisor populates many configuration settings based on the your previously entered
settings and your environment. Although Stack Advisor provides many default settings
for Druid nodes and other related entities in the cluster, you might need to manually tune
the configuration parameter settings. Review the following druid.io documentation to
determine if you need to change any default settings and how other manual settings
operate:

• Configuring Druid (Common Properties)

• Runtime Configuration

• Coordinator Node Configuration

• Historical Node Configuration

• Broker Node Configuration

• Realtime Node Configuration

• Logging

7.3.3.1. Setting up MySQL for Druid

Complete the following task only if you chose MySQL as the metadata store for Druid.

http://druid.io/docs/0.9.2/configuration/index.html
http://druid.io/docs/0.9.2/configuration/indexing-service.html
http://druid.io/docs/0.9.2/configuration/coordinator.html
http://druid.io/docs/0.9.2/configuration/historical.html
http://druid.io/docs/0.9.2/configuration/broker.html
http://druid.io/docs/0.9.2/configuration/realtime.html
http://druid.io/docs/0.9.2/configuration/logging.html

Hortonworks Data Platform August 31, 2017

120

1. On the Ambari Server host, stage the appropriate MySQL connector for later
deployment.

a. Install the connector.

RHEL/CentOS/Oracle Linux

yum install mysql-connector-java*

SLES

zypper install mysql-connector-java*

Debian/Ubuntu

apt-get install libmysql-java

b. Confirm that mysql-connector-java.jar is in the Java share directory.

ls /usr/share/java/mysql-connector-java.jar

c. Make sure the Linux permission of the .JAR file is 644.

d. Execute the following command:

ambari-server setup --jdbc-db=mysql --jdbc-driver=/usr/share/
java/mysql-connector-java.jar

2. Create the Druid database.

• The Druid database must be created prior using the following command:

mysql -u root -p

CREATE DATABASE <DRUIDDATABASE> DEFAULT CHARACTER SET utf8;

replacing <DRUIDDATABASE> with the Druid database name.

3. Create a Druid user with sufficient superuser permissions.

• Enter the following in the MySQL database admin utility:

mysql -u root -p

CREATE USER '<DRUIDUSER>'@'%' IDENTIFIED BY '<DRUIDPASSWORD>';

GRANT ALL PRIVILEGES ON <DRUIDDATABASE>.* TO '<DRUIDUSER>'@'%’;

FLUSH PRIVILEGES;

replacing <DRUIDUSER> with the Druid user name and <DRUIDPASSWORD> with the
Druid user password.

Hortonworks Data Platform August 31, 2017

121

7.4. Security and Druid
Important

Place the Druid endpoints behind a firewall. More robust security features that
will remove the need to deploy a firewall around Druid are in development.

You can configure Druid nodes to integrate with a Kerberos-secured Hadoop cluster
to enable authentication between Druid and other HDP Services. You can enable the
authentication with Ambari 2.5.0+, which lets you secure the HTTP endpoints by including
a SPNEGO-based Druid extension. The mechanism by which Kerberos security uses keytabs
and principals to strengthen security is described in Kerberos Overview and Kerberos
Principals.

A benefit of enabling authentication in this way is that it can connect Druid Web UIs to
the core Hadoop cluster while maintaining Kerberos protection. The main Web UIs to use
with HDP are the Coordinator Console and the Overlord Console. See Coordinator Node
and Overlord Node on the druid.io documentation website for more information about the
consoles for these nodes.

7.4.1. Securing Druid Web UIs and Accessing Endpoints

Enabling SPNEGO-based Kerberos authentication between the Druid HTTP endpoints and
the rest of the Hadoop cluster requires running the Ambari Kerberos Wizard and manually
connecting to Druid HTTP endpoints in a command line. After authenticating successfully to
Druid, you can submit queries through the endpoints.

Procedure 7.1. Enabling Kerberos Authentication in Druid

Prerequisite: The Ambari Server and Services on the cluster must have SPNEGO-based
Kerberos security enabled. See the Ambari Security Guide if you need to configure and
enable SPNEGO-based Kerberos authentication.

Important

The whole HDP cluster is down after you configure the Kerberos settings
and initialize the Kerberos wizard in the following task. Ensure you can have
temporary down-time before completing all steps of this task.

1. Follow the steps in Launching the Kerberos Wizard (Automated Setup) until you get
to the Configure Identities window of the Ambari Kerberos Wizard. Do not click the
Next button until you adjust advanced Druid configuration settings as follows:

2. On the Configure Identities window:

a. Review the principal names, particularly the Ambari Principals on the General tab.
These principal names, by default, append the name of the cluster to each of the
Ambari principals. You can leave the default appended names or adjust them by
removing the -cluster-name from the principal name string. For example, if
your cluster is named druid and your realm is EXAMPLE.COM, the Druid principal
that is created is druid@EXAMPLE.COM.

http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-security/content/kerberos_overview.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-security/content/kerberos_principals.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-security/content/kerberos_principals.html
http://druid.io/docs/0.9.2/design/coordinator.html
http://druid.io/docs/0.9.2/design/indexing-service.html#overlord-node
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-security/content/ch_amb_sec_guide.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-security/content/launching_the_kerberos_wizard_automated_setup.html

Hortonworks Data Platform August 31, 2017

122

b. Select the Advanced tab > Druid drop-down menu.

c. Use the following table to determine for which Druid properties, if any, you need
to change the default settings. In most cases, you should not need to change the
default values.

Table 7.2. Advanced Druid Identity Properties of Ambari Kerberos
Wizard

Property Default Value Setting Description

druid.hadoop.security.spnego.

excludedPaths

['status']

If you want to set more than
one path, enter values in the
following format: ['/status','/
condition']

Specify here HTTP
paths that do not
need to be secured
with authentication.
A possible use case
for providing paths
here are to test scripts
outside of a production
environment.

druid.hadoop.security.spnego.

keytab

keytab_dir/
spnego.service.keytab

This is the SPNEGO
service keytab
that is used for
authentication.

druid.hadoop.security.spnego.

principal

HTTP/_HOST@realm This is the SPNEGO
service principal
that is used for
authentication.

druid.security.extensions.

loadlist

[druid-kerberos] This indicates the Druid
security extension to
load for Kerberos.

d. Confirm your configuration. Optionally, you can download a CSV file of the
principals and keytabs that Ambari can automatically create.

e. Click Next to proceed with kerberization of the cluster. During the process,
all running Services are stopped. Kerberos configuration settings are applied
to various components, and keytabs and principals are generated. When the
Kerberos process finishes, all Services are restarted and checked.

Tip

Initializing the Kerberos Wizard might require a significant amount
of time to complete, depending on the cluster size. Refer to the GUI
messaging on the screen for progress status.

Procedure 7.2. Accessing Kerberos-Protected HTTP Endpoints

Before accessing any Druid HTTP endpoints, you need to authenticate yourself using
Kerberos and get a valid Kerberos ticket as follows:

1. Log in via the Key Distribution Center (KDC) using the following kinit command,
replacing the arguments with your real values:

kinit -k -t keytab_file_path user@REALM.COM

Hortonworks Data Platform August 31, 2017

123

2. Verify that you received a valid Kerberos authentication ticket by running the klist
command. The console prints a Credentials cache message if authentication was
successful. An error message indicates that the credentials are not cached.

3. Access Druid with a curl command. When you run the command, you must include
the SPNEGO protocol --negotiate argument. (Note that this argument has double
hyphens.) The following is an example command. Replace anyUser, cookies.txt,
and endpoint with your real values.

curl --negotiate -u:anyUser -b ~/cookies.txt -c ~/cookies.txt -X POST -
H'Content-Type: application/json' http://_endpoint

4. Submit a query to Druid in the following example curl command format:

curl --negotiate -u:anyUser -b ~/cookies.txt -c ~/cookies.txt -X POST
 -H'Content-Type: application/json' http://broker-host:port/druid/v2/?
pretty -d @query.json

7.5. High Availability in Druid Clusters
Ambari provides the ability to configure the High Availability (HA) features available in
Druid and other HDP Stack Services.

7.5.1. Configuring Druid Clusters for High Availability

HA by its nature requires a multinode structure with somewhat more sophisticated
configuration than a cluster without HA. Do not use local storage in an HA environment.

7.5.1.1. Configure a Cluster with an HDFS Filesystem

Prerequisites

MySQL or Postgres must be installed as the metadata storage layer. Configure your
metadata storage for HA mode to avoid outages that impact cluster operations. See either
High Availability and Scalability in the MySQL Reference Manual or High Availability, Load
Balancing, and Replication in the PostgreSQL Documentation, depending on your storage
selection. Derby does not support a multinode cluster with HA.
At least three ZooKeeper nodes must be dedicated to HA mode.

Steps

1. Enable Namenode HA using the wizard as described in Configuring NameNode High
Availability

2. Install the Druid Overlord, Coordinator, Broker, Realtime, and Historical processes on
multiple nodes that are distributed among different hardware servers.

• Within each Overlord and Coordinator domain, ZooKeeper determines which node is
the Active node. The other nodes supporting each process are in Standby state until
an Active node stops running and the Standby nodes receive the failover.

• Multiple Historical and Realtime nodes also serve to support a failover mechanism. But
for Broker and Realtime processes, there are no designated Active and Standby nodes.

https://dev.mysql.com/doc/refman/5.7/en/ha-overview.html
https://www.postgresql.org/docs/9.5/static/high-availability.html
https://www.postgresql.org/docs/9.5/static/high-availability.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/how_to_configure_namenode_high_availability.html
http://private-repo-1.hortonworks.com/HDPDocuments/Ambari-2.5.2.0/bk_ambari-operations/content/how_to_configure_namenode_high_availability.html

Hortonworks Data Platform August 31, 2017

124

• Muliple instances of Druid Broker processes is required for HA. Recommendations: Use
an external, virtual IP address or load balancer to direct user queries to multiple Druid
Broker instances. A Druid Router can also serve as a mechanism to route queries to
multiple broker nodes.

3. Ensure that the replication factor for each data source is set greater than 1 in the
Coordinator process rules. If no data source rule configurations were changed, no action
is required because the default value is 2.

	Hortonworks Data Platform
	Table of Contents
	1. What's New in Data Access for HDP 2.6
	1.1. What's New in Apache Hive
	1.2. What's New in Apache Tez
	1.3. What's New in Apache HBase
	1.4. What's New in Apache Phoenix
	1.5. Druid

	2. Data Warehousing with Apache Hive
	2.1. Content Roadmap
	2.2. Features Overview
	2.2.1. Temporary Tables
	2.2.2. Optimized Row Columnar (ORC) Format
	2.2.3. SQL Optimization
	2.2.3.1. Enabling Cost-Based SQL Optimization
	2.2.3.2. Generating Statistics
	2.2.3.3. Viewing Statistics

	2.2.4. Transactions in Hive
	2.2.4.1. Understanding and Administering Hive Compactions
	2.2.4.1.1. Configuring the Hive Transaction Manager
	2.2.4.1.2. Performing Manual Compactions
	2.2.4.1.3. Lock Manager
	2.2.4.1.4. Transaction Limitations

	2.2.4.2. Creating Hive ACID Transaction Tables
	2.2.4.3. INSERT ... VALUES, UPDATE, DELETE, and MERGE SQL Statements

	2.2.5. SQL Compliance
	2.2.5.1. SQL Standard-Based Authorization with GRANT and REVOKE SQL Statements
	2.2.5.2. Subqueries
	2.2.5.3. Common Table Expressions
	2.2.5.4. Quoted Identifiers in Column Names
	2.2.5.5. CHAR Data Type Support

	2.2.6. Streaming Data Ingestion
	2.2.7. Query Vectorization
	2.2.8. Beeline versus Hive CLI
	2.2.9. Hive JDBC and ODBC Drivers

	2.3. Moving Data into Apache Hive
	2.3.1. Using an External Table
	2.3.2. Using Sqoop
	2.3.3. Incrementally Updating a Table

	2.4. Configuring HiveServer2
	2.4.1. Configuring HiveServer2 for Transactions (ACID Support)
	2.4.2. Configuring HiveServer2 for LDAP and for LDAP over SSL

	2.5. Securing Apache Hive
	2.5.1. Authorization Using Apache Ranger Policies
	2.5.2. SQL Standard-Based Authorization
	2.5.2.1. Configuring SQL Standard-Based Authorization

	2.5.3. Required Privileges for Hive Operations
	2.5.4. Storage-Based Authorization
	2.5.5. Configuring Storage-Based Authorization
	2.5.6. Permissions for Apache Hive Operations
	2.5.7. Row-Level Filtering and Column Masking

	2.6. Troubleshooting
	2.6.1. JIRAs

	3. Enabling Efficient Execution with Apache Pig and Apache Tez
	4. Managing Metadata Services with Apache HCatalog
	4.1. HCatalog Community Information
	4.2. WebHCat Community Information
	4.3. Security for WebHCat

	5. Persistent Read/Write Data Access with Apache HBase
	5.1. Content Roadmap
	5.2. Deploying Apache HBase
	5.2.1. Installation and Setup
	5.2.2. Cluster Capacity and Region Sizing
	5.2.2.1. Node Count and JVM Configuration
	5.2.2.1.1. Physical Size of the Data
	5.2.2.1.2. Read/Write Throughput

	5.2.2.2. Region Count and Size
	5.2.2.2.1. Increase MemStore size for RegionServer
	5.2.2.2.2. Increase Size of Region

	5.2.2.3. Initial Tuning of the Cluster
	5.2.2.3.1. Increasing the Request Handler Thread Count
	5.2.2.3.2. Configuring the Size and Number of WAL Files
	5.2.2.3.3. Configuring Compactions
	5.2.2.3.4. Splitting Tables
	5.2.2.3.5. Tuning JVM Garbage Collection in RegionServers

	5.2.3. Enabling Multitenancy with Namepaces
	5.2.3.1. Default HBase Namespace Actions
	5.2.3.2. Defining and Dropping Namespaces

	5.2.4. Security Features Available in Technical Preview

	5.3. Managing Apache HBase Clusters
	5.3.1. Monitoring Apache HBase Clusters
	5.3.2. Optimizing Apache HBase I/O
	5.3.2.1. An Overview of HBase I/O
	5.3.2.2. Configuring BlockCache
	5.3.2.2.1. Compressing BlockCache

	5.3.2.3. Configuring Off-Heap Memory (BucketCache)
	5.3.2.3.1. Configuring BucketCache

	5.3.3. Importing Data into HBase with Bulk Load
	5.3.4. Using Snapshots
	5.3.4.1. Configuring a Snapshot
	5.3.4.2. Taking a Snapshot
	5.3.4.3. Listing Snapshots
	5.3.4.4. Deleting Snapshots
	5.3.4.5. Cloning a Table from a Snapshot
	5.3.4.6. Restoring a Snapshot
	5.3.4.7. Snapshot Operations and ACLs
	5.3.4.8. Exporting to Another Cluster

	5.4. Backing up and Restoring Apache HBase Datasets
	5.4.1. Planning a Backup-and-Restore Strategy for Your Environment
	5.4.1.1. Backup within a Cluster
	5.4.1.2. Dedicated HDFS Archive Cluster
	5.4.1.3. Backup to the Cloud or a Storage Vendor

	5.4.2. Best Practices for Backup-and-Restore
	5.4.3. Running the Backup-and-Restore Utility
	5.4.3.1. Creating and Maintaining a Complete Backup Image
	5.4.3.1.1. Required Command-Line Arguments
	5.4.3.1.2. Optional Command-Line Arguments
	5.4.3.1.3. Example of Usage

	5.4.3.2. Monitoring Backup Progress
	5.4.3.2.1. Required Command-Line Argument
	5.4.3.2.2. Example of Usage

	5.4.3.3. Using Backup Sets
	5.4.3.3.1. Subcommands
	5.4.3.3.2. Optional Command-Line Arguments
	5.4.3.3.3. Example of Usage

	5.4.3.4. Restoring a Backup Image
	5.4.3.4.1. Required Command-Line Arguments
	5.4.3.4.2. Optional Command-Line Arguments
	5.4.3.4.3. Example of Usage

	5.4.3.5. Administering and Deleting Backup Images
	5.4.3.6. Technical Details of Incremental Backup-and-Restore
	5.4.3.7. Scenario: Safeguarding Application Datasets on Amazon S3

	5.5. Medium Object (MOB) Storage Support in Apache HBase
	5.5.1. Enabling MOB Storage Support
	5.5.2. Testing the MOB Storage Support Configuration
	5.5.3. Tuning MOB Storage Cache Properties

	5.6. HBase Quota Management
	5.6.1. Setting Up Quotas
	5.6.2. Throttle Quotas
	5.6.3. Space Quotas
	5.6.4. Quota Enforcement
	5.6.5. Quota Violation Policies
	5.6.6. Impact of Quota Violation Policy
	5.6.7. Number-of-Tables Quotas
	5.6.8. Number-of-Regions Quotas

	6. Orchestrating SQL and APIs with Apache Phoenix
	6.1. Enabling Phoenix and Interdependent Components
	6.2. Thin Client Connectivity with Phoenix Query Server
	6.2.1. Securing Authentication on the Phoenix Query Server

	6.3. Selecting and Obtaining a Client Driver
	6.4. Creating and Using User-Defined Functions (UDFs) in Phoenix
	6.5. Mapping Phoenix Schemas to HBase Namespaces
	6.5.1. Enabling Namespace Mapping
	6.5.2. Creating New Schemas and Tables with Namespace Mapping
	6.5.3. Associating Tables of a Schema to a Namespace
	6.5.3.1. Associating in a Noncustomized Environment without Kerberos
	6.5.3.2. Associating in a Customized Kerberos Environment

	6.6. Phoenix Repair Tool
	6.6.1. Running the Phoenix Repair Tool

	7. Real-Time Data Analytics with Druid
	7.1. Content Roadmap
	7.2. Architecture
	7.3. Installing and Configuring Druid
	7.3.1. Interdependencies for the Ambari-Assisted Druid Installation
	7.3.2. Assigning Slave and Client Components
	7.3.3. Configuring the Druid Installation
	7.3.3.1. Setting up MySQL for Druid

	7.4. Security and Druid
	7.4.1. Securing Druid Web UIs and Accessing Endpoints

	7.5. High Availability in Druid Clusters
	7.5.1. Configuring Druid Clusters for High Availability
	7.5.1.1. Configure a Cluster with an HDFS Filesystem

